Английская Википедия:Decagon

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Regular polygon db In geometry, a decagon (from the Greek δέκα déka and γωνία gonía, "ten angles") is a ten-sided polygon or 10-gon.[1] The total sum of the interior angles of a simple decagon is 1440°.

Regular decagon

A regular decagon has all sides of equal length and each internal angle will always be equal to 144°.[1] Its Schläfli symbol is {10} [2] and can also be constructed as a truncated pentagon, t{5}, a quasiregular decagon alternating two types of edges.

Шаблон:Multiple image

Side length

Файл:01-Zehneck-Seitenlänge.svg

The picture shows a regular decagon with side length <math>a</math> and radius <math>R</math> of the circumscribed circle.

  • The triangle <math>E_{10}E_1M</math> has two equally long legs with length <math>R</math> and a base with length <math>a</math>
  • The circle around <math>E_1</math> with radius <math>a</math> intersects <math>]M\,E_{10}[</math> in a point <math>P</math> (not designated in the picture).
  • Now the triangle <math>{E_{10}E_1P}\;</math> is an isosceles triangle with vertex <math>E_1</math> and with base angles <math>m\angle E_1 E_{10} P = m\angle E_{10} P E_1 = 72^\circ \;</math>.
  • Therefore <math>m\angle P E_1 E_{10} = 180^\circ -2\cdot 72^\circ = 36^\circ \;</math>. So <math>\; m\angle M E_1 P = 72^\circ- 36^\circ = 36^\circ\;</math> and hence <math>\; E_1 M P\;</math> is also an isosceles triangle with vertex <math>P</math>. The length of its legs is <math>a</math>, so the length of <math>[P\,E_{10}]</math> is <math>R-a</math>.
  • The isosceles triangles <math>E_{10} E_1 M\;</math> and <math>P E_{10} E_1\;</math> have equal angles of 36° at the vertex, and so they are similar, hence: <math>\;\frac{a}{R}=\frac{R-a}{a}</math>
  • Multiplication with the denominators <math>R,a >0</math> leads to the quadratic equation: <math>\;a^2=R^2-aR\;</math>
  • This equation for the side length <math>a\,</math> has one positive solution: <math>\;a=\frac{R}{2}(-1+\sqrt{5})</math>

So the regular decagon can be constructed with ruler and compass.

Further conclusions

<math>\;R=\frac{2a}{\sqrt{5}-1}=\frac{a}{2}(\sqrt{5}+1)\;</math> and the base height of <math>\Delta\,E_{10} E_1 M\,</math> (i.e. the length of <math>[M\,D]</math>) is <math>h = \sqrt{R^2-(a/2)^2}=\frac{a}{2}\sqrt{5+2\sqrt{5}}\;</math> and the triangle has the area: <math>A_\Delta=\frac{a}{2}\cdot h = \frac{a^2}{4}\sqrt{5+2\sqrt{5}}</math>.

Area

The area of a regular decagon of side length a is given by:[3]

<math> A = \frac{5}{2} a^2\cot\left(\frac{\pi}{10} \right) =
                    \frac{5}{2} a^2\sqrt{5+2\sqrt{5}}
               \simeq 7.694208843\,a^2
</math>

In terms of the apothem r (see also inscribed figure), the area is:

<math>A = 10 \tan\left(\frac{\pi}{10}\right) r^2 =
                    2r^2\sqrt{5\left(5-2\sqrt5\right)}
                \simeq 3.249196962\,r^2

</math>

In terms of the circumradius R, the area is:

<math>

A = 5 \sin\left(\frac{\pi}{5}\right) R^2 = \frac{5}{2}R^2\sqrt{\frac{5-\sqrt{5}}{2}} \simeq 2.938926261\,R^2 </math>

An alternative formula is <math>A=2.5da</math> where d is the distance between parallel sides, or the height when the decagon stands on one side as base, or the diameter of the decagon's inscribed circle. By simple trigonometry,

<math>d=2a\left(\cos\tfrac{3\pi}{10}+\cos\tfrac{\pi}{10}\right),</math>

and it can be written algebraically as

<math>d=a\sqrt{5+2\sqrt{5}}.</math>

Sides

A regular decagon has 10 sides and is equilateral. It has 35 diagonals

Construction

As 10 = 2 × 5, a power of two times a Fermat prime, it follows that a regular decagon is constructible using compass and straightedge, or by an edge-bisection of a regular pentagon.[4] Шаблон:Multiple image

An alternative (but similar) method is as follows:

  1. Construct a pentagon in a circle by one of the methods shown in constructing a pentagon.
  2. Extend a line from each vertex of the pentagon through the center of the circle to the opposite side of that same circle. Where each line cuts the circle is a vertex of the decagon.  In other words,  the image of a regular pentagon under a point reflection with respect of its center is a concentric congruent pentagon,  and the two pentagons have in total the vertices of a concentric regular decagon.
  3. The five corners of the pentagon constitute alternate corners of the decagon. Join these points to the adjacent new points to form the decagon.

The golden ratio in decagon

Both in the construction with given circumcircle[5] as well as with given side length is the golden ratio dividing a line segment by exterior division the determining construction element.

<math>\frac{\overline{AM}}{\overline{MH}} = \frac{\overline{AH}}{\overline{AM}} = \frac{1+ \sqrt{5}}{2} = \Phi \approx 1.618 \text{.}</math>
<math>\frac{\overline{E_1 E_{10}}}{\overline{E_1 F}} = \frac{\overline{E_{10} F}}{\overline{E_1 E_{10}}} = \frac{R}{a} = \frac{1+ \sqrt{5}}{2} =\Phi \approx 1.618 \text{.}</math>

Шаблон:Multiple image

Symmetry

Файл:Symmetries of decagon.png
Symmetries of a regular decagon. Vertices are colored by their symmetry positions. Blue mirrors are drawn through vertices, and purple mirrors are drawn through edges. Gyration orders are given in the center.

The regular decagon has Dih10 symmetry, order 20. There are 3 subgroup dihedral symmetries: Dih5, Dih2, and Dih1, and 4 cyclic group symmetries: Z10, Z5, Z2, and Z1.

These 8 symmetries can be seen in 10 distinct symmetries on the decagon, a larger number because the lines of reflections can either pass through vertices or edges. John Conway labels these by a letter and group order.[7] Full symmetry of the regular form is r20 and no symmetry is labeled a1. The dihedral symmetries are divided depending on whether they pass through vertices (d for diagonal) or edges (p for perpendiculars), and i when reflection lines path through both edges and vertices. Cyclic symmetries in the middle column are labeled as g for their central gyration orders.

Each subgroup symmetry allows one or more degrees of freedom for irregular forms. Only the g10 subgroup has no degrees of freedom but can be seen as directed edges.

The highest symmetry irregular decagons are d10, an isogonal decagon constructed by five mirrors which can alternate long and short edges, and p10, an isotoxal decagon, constructed with equal edge lengths, but vertices alternating two different internal angles. These two forms are duals of each other and have half the symmetry order of the regular decagon. Шаблон:-

Dissection

10-cube projection 40 rhomb dissection
Файл:10-cube t0 A9.svg Файл:10-gon rhombic dissection-size2.svg Файл:10-gon rhombic dissection2-size2.svg Файл:10-gon rhombic dissection3-size2.svg Файл:10-gon rhombic dissection4-size2.svg
Файл:10-gon rhombic dissection5-size2.svg Файл:10-gon rhombic dissection6-size2.svg Файл:10-gon rhombic dissection7-size2.svg Файл:10-gon rhombic dissection8-size2.svg Файл:10-gon rhombic dissection9-size2.svg

Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms.[8] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular decagon, m=5, and it can be divided into 10 rhombs, with examples shown below. This decomposition can be seen as 10 of 80 faces in a Petrie polygon projection plane of the 5-cube. A dissection is based on 10 of 30 faces of the rhombic triacontahedron. The list Шаблон:OEIS2C defines the number of solutions as 62, with 2 orientations for the first symmetric form, and 10 orientations for the other 6.

Regular decagon dissected into 10 rhombi
Файл:5-cube t0.svg
5-cube
Файл:Sun decagon.svg Файл:Sun2 decagon.svg Файл:Dart2 decagon.svg
Файл:Halfsun decagon.svg Файл:Dart decagon.svg Файл:Dart decagon ccw.svg Файл:Cartwheel decagon.svg

Шаблон:-

Skew decagon

3 regular skew zig-zag decagons
{5}#{ } {5/2}#{ } {5/3}#{ }
Файл:Regular skew polygon in pentagonal antiprism.png Файл:Regular skew polygon in pentagrammic antiprism.png Файл:Regular skew polygon in pentagrammic crossed-antiprism.png
A regular skew decagon is seen as zig-zagging edges of a pentagonal antiprism, a pentagrammic antiprism, and a pentagrammic crossed-antiprism.

A skew decagon is a skew polygon with 10 vertices and edges but not existing on the same plane. The interior of such a decagon is not generally defined. A skew zig-zag decagon has vertices alternating between two parallel planes.

A regular skew decagon is vertex-transitive with equal edge lengths. In 3-dimensions it will be a zig-zag skew decagon and can be seen in the vertices and side edges of a pentagonal antiprism, pentagrammic antiprism, and pentagrammic crossed-antiprism with the same D5d, [2+,10] symmetry, order 20.

These can also be seen in these four convex polyhedra with icosahedral symmetry. The polygons on the perimeter of these projections are regular skew decagons.

Orthogonal projections of polyhedra on 5-fold axes
Файл:Dodecahedron petrie.png
Dodecahedron
Файл:Icosahedron petrie.svg
Icosahedron
Файл:Dodecahedron t1 H3.png
Icosidodecahedron
Файл:Dual dodecahedron t1 H3.png
Rhombic triacontahedron

Petrie polygons

The regular skew decagon is the Petrie polygon for many higher-dimensional polytopes, shown in these orthogonal projections in various Coxeter planes:[9] The number of sides in the Petrie polygon is equal to the Coxeter number, h, for each symmetry family.

A9 D6 B5
Файл:9-simplex t0.svg
9-simplex
Файл:6-cube t5 B5.svg
411
Файл:6-demicube t0 D6.svg
131
Файл:5-cube t4.svg
5-orthoplex
Файл:5-cube t0.svg
5-cube

See also

References

Шаблон:Reflist

External links

Шаблон:Polygons

  1. 1,0 1,1 Шаблон:Citation.
  2. Шаблон:Citation.
  3. Шаблон:Citation. Note that this source uses a as the edge length and gives the argument of the cotangent as an angle in degrees rather than in radians.
  4. Шаблон:Citation.
  5. Шаблон:Citation. Retrieved 10 February 2016.
  6. Шаблон:Citation. Retrieved 10 February 2016.
  7. John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, (2008) The Symmetries of Things, Шаблон:Isbn (Chapter 20, Generalized Schaefli symbols, Types of symmetry of a polygon pp. 275-278)
  8. Coxeter, Mathematical recreations and Essays, Thirteenth edition, p.141
  9. Coxeter, Regular polytopes, 12.4 Petrie polygon, pp. 223-226.