Английская Википедия:Generalized Clifford algebra
In mathematics, a Generalized Clifford algebra (GCA) is a unital associative algebra that generalizes the Clifford algebra, and goes back to the work of Hermann Weyl,[1] who utilized and formalized these clock-and-shift operators introduced by J. J. Sylvester (1882),[2] and organized by Cartan (1898)[3] and Schwinger.[4]
Clock and shift matrices find routine applications in numerous areas of mathematical physics, providing the cornerstone of quantum mechanical dynamics in finite-dimensional vector spaces.[5][6][7] The concept of a spinor can further be linked to these algebras.[6]
The term Generalized Clifford Algebras can also refer to associative algebras that are constructed using forms of higher degree instead of quadratic forms.[8][9][10][11]
Definition and properties
Abstract definition
The Шаблон:Mvar-dimensional generalized Clifford algebra is defined as an associative algebra over a field Шаблон:Mvar, generated by[12]
- <math>\begin{align}
e_j e_k &= \omega_{jk} e_k e_j \\ \omega_{jk} e_l &= e_l \omega_{jk} \\ \omega_{jk} \omega_{lm} &= \omega_{lm} \omega_{jk}
\end{align}</math>
and
- <math>e_j^{N_j} = 1 = \omega_{jk}^{N_j} = \omega_{jk}^{N_k} \,</math>
Moreover, in any irreducible matrix representation, relevant for physical applications, it is required that
- <math>\omega_{jk} = \omega_{kj}^{-1} = e^{2\pi i \nu_{kj}/N_{kj}}</math>
Шаблон:Math, and <math>N_{kj} ={}</math>gcd<math> (N_j, N_k)</math>. The field Шаблон:Mvar is usually taken to be the complex numbers C.
More specific definition
Шаблон:Main article
In the more common cases of GCA,[6] the Шаблон:Mvar-dimensional generalized Clifford algebra of order Шаблон:Mvar has the property Шаблон:Math, <math>N_k=p</math> for all j,k, and <math>\nu_{kj}=1</math>. It follows that
- <math>\begin{align}
e_j e_k &= \omega \, e_k e_j \,\\ \omega e_l &= e_l \omega \,
\end{align}</math>
and
- <math>e_j^{p} = 1 = \omega^{p} \,</math>
for all j,k,l = 1,...,n, and
- <math>\omega = \omega^{-1} = e^{2\pi i /p}</math>
is the Шаблон:Mvarth root of 1.
There exist several definitions of a Generalized Clifford Algebra in the literature.[13]
- Clifford algebra
In the (orthogonal) Clifford algebra, the elements follow an anticommutation rule, with Шаблон:Math.
Matrix representation
Шаблон:Main article The Clock and Shift matrices can be represented[14] by Шаблон:Math matrices in Schwinger's canonical notation as
- <math>\begin{align}
V &= \begin{pmatrix} 0 & 1 & 0 & \cdots & 0\\ 0 & 0 & 1 & \cdots & 0\\ 0 & 0 & \ddots & 1 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}, & U &= \begin{pmatrix} 1 & 0 & 0 & \cdots & 0\\ 0 & \omega & 0 & \cdots & 0\\ 0 & 0 & \omega^2 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & \omega^{(n-1)} \end{pmatrix}, & W &= \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^2 & \cdots & \omega^{n-1}\\ 1 & \omega^2 & (\omega^2)^2 & \cdots & \omega^{2(n-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)^2} \end{pmatrix}
\end{align}</math> .
Notably, Шаблон:Math, Шаблон:Math (the Weyl braiding relations), and Шаблон:Math (the discrete Fourier transform). With Шаблон:Math, one has three basis elements which, together with Шаблон:Mvar, fulfil the above conditions of the Generalized Clifford Algebra (GCA).
These matrices, Шаблон:Mvar and Шаблон:Mvar, normally referred to as "shift and clock matrices", were introduced by J. J. Sylvester in the 1880s. (Note that the matrices Шаблон:Mvar are cyclic permutation matrices that perform a circular shift; they are not to be confused with upper and lower shift matrices which have ones only either above or below the diagonal, respectively).
Specific examples
Case Шаблон:Math
In this case, we have Шаблон:Mvar = −1, and
- <math>\begin{align}
V &= \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}, & U &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, & W &= \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
\end{align}</math>
thus
- <math>\begin{align}
e_1 &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, & e_2 &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, & e_3 &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\end{align}</math> ,
which constitute the Pauli matrices.
Case Шаблон:Math
In this case we have Шаблон:Mvar = Шаблон:Mvar, and
- <math>\begin{align}
V &= \begin{pmatrix} 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\\ 1 & 0 & 0 & 0 \end{pmatrix}, & U &= \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & i & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -i \end{pmatrix}, & W &= \begin{pmatrix} 1 & 1 & 1 & 1\\ 1 & i & -1 & -i\\ 1 & -1 & 1 & -1\\ 1 & -i & -1 & i \end{pmatrix}
\end{align}</math>
and Шаблон:Math may be determined accordingly.
See also
References
Further reading
- Шаблон:Cite journal
- Шаблон:Cite arXiv (In The legacy of Alladi Ramakrishnan in the mathematical sciences (pp. 465–489). Springer, New York, NY.)
- Шаблон:Cite journal
- Шаблон:Cite journal
- Шаблон:Cite journal
- ↑ Шаблон:Cite journal
Шаблон:Cite book - ↑ Шаблон:Citation; ibid II (1883) 46; ibid III (1884) 7–9. Summarized in The Collected Mathematics Papers of James Joseph Sylvester (Cambridge University Press, 1909) v III . online and further.
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
Шаблон:Cite journal - ↑ Шаблон:Cite journal
- ↑ 6,0 6,1 6,2 See for example: Шаблон:Cite book
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite book
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ For a serviceable review, see Шаблон:Cite journal
- ↑ See for example the review provided in: Шаблон:Cite web
- ↑ Шаблон:Cite book