Английская Википедия:Geometric process
Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску
Шаблон:Technical In probability, statistics and related fields, the geometric process is a counting process, introduced by Lam in 1988.[1] It is defined as
The geometric process. Given a sequence of non-negative random variables :<math> \{X_k,k=1,2, \dots\} </math>, if they are independent and the cdf of <math> X_k </math> is given by <math>F(a^{k-1}x)</math> for <math> k=1,2, \dots </math>, where <math>a </math> is a positive constant, then <math>\{X_k,k=1,2,\ldots\}</math> is called a geometric process (GP).
The GP has been widely applied in reliability engineering[2]
Below are some of its extensions.
- The α- series process.[3] Given a sequence of non-negative random variables:<math> \{X_k,k=1,2, \dots\} </math>, if they are independent and the cdf of <math> \frac{X_k}{k^a} </math> is given by <math>F(x)</math> for <math> k=1,2, \dots </math>, where <math>a </math> is a positive constant, then <math>\{X_k,k=1,2,\ldots\}</math> is called an α- series process.
- The threshold geometric process.[4] A stochastic process <math>\{Z_n, n = 1,2, \ldots\}</math> is said to be a threshold geometric process (threshold GP), if there exists real numbers <math>a_i > 0, i = 1,2, \ldots , k</math> and integers <math>\{1 = M_1 < M_2 < \cdots < M_k < M_{k+1} = \infty\}</math> such that for each <math>i = 1, \ldots , k</math>, <math>\{a_i^{n-M_i}Z_n, M_i \le n < M_{i+1}\}</math> forms a renewal process.
- The doubly geometric process.[5] Given a sequence of non-negative random variables :<math> \{X_k,k=1,2, \dots\} </math>, if they are independent and the cdf of <math> X_k </math> is given by <math>F(a^{k-1}x^{h(k)})</math> for <math> k=1,2, \dots </math>, where <math>a </math> is a positive constant and <math>h(k)</math> is a function of <math>k </math> and the parameters in <math>h(k)</math> are estimable, and <math>h(k)>0</math> for natural number <math>k</math>, then <math>\{X_k,k=1,2,\ldots\}</math> is called a doubly geometric process (DGP).
- The semi-geometric process.[6] Given a sequence of non-negative random variables <math> \{X_k, k=1,2,\dots\} </math>, if <math> P\{X_k < x|X_{k-1}=x_{k-1}, \dots , X_1=x_1\} = P\{X_k < x|X_{k-1}=x_{k-1}\} </math> and the marginal distribution of <math> X_k </math> is given by <math> P\{X_k < x\}=F_k (x)(\equiv F(a^{k-1} x)) </math>, where <math> a </math> is a positive constant, then <math>\{X_k, k=1,2,\dots\}</math> is called a semi-geometric process
- The double ratio geometric process.[7] Given a sequence of non-negative random variables <math>\{Z_k^D,k=1,2, \dots\}</math>, if they are independent and the cdf of <math> Z_k^D </math> is given by <math>F_k^D(t)=1-\exp\{-\int_0^{t} b_k h(a_k u) du\}</math> for <math>k=1,2, \dots</math>, where <math> a_k</math> and <math> b_k </math> are positive parameters (or ratios) and <math> a_1=b_1=1</math>. We call the stochastic process the double-ratio geometric process (DRGP).
References
- ↑ Lam, Y. (1988). Geometric processes and replacement problem. Acta Mathematicae Applicatae Sinica. 4, 366–377
- ↑ Lam, Y. (2007). Geometric process and its applications. World Scientific, Singapore MATH. Шаблон:ISBN.
- ↑ Braun, W. J., Li, W., & Zhao, Y. Q. (2005). Properties of the geometric and related processes. Naval Research Logistics (NRL), 52(7), 607–616.
- ↑ Chan, J.S., Yu, P.L., Lam, Y. & Ho, A.P. (2006). Modelling SARS data using threshold geometric process. Statistics in Medicine. 25 (11): 1826–1839.
- ↑ Wu, S. (2018). Doubly geometric processes and applications. Journal of the Operational Research Society, 69(1) 66-77. Шаблон:Doi.
- ↑ Wu, S., Wang, G. (2017). The semi-geometric process and some properties. IMA J Management Mathematics, 1–13.
- ↑ Wu, S. (2022) The double ratio geometric process for the analysis of recurrent events. Naval Research Logistics, 69(3) 484-495.