Английская Википедия:Hegerfeldt's theorem

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Hegerfeldt's theorem is a no-go theorem that demonstrates the incompatibility of the existence of spatially localized discrete particles with the combination of the principles of quantum mechanics and special relativity. A crucial requirement is that the states of single particle have positive energy. It has been used to support the conclusion that reality must be described solely in terms of field-based formulations.[1][2] However, it is possible to construct localization observables in terms of positive-operator valued measures that are compatible with the restrictions imposed by the Hegerfeldt theorem.[3]

Specifically, Hegerfeldt's theorem refers to a free particle whose time evolution is determined by a positive Hamiltonian. If the particle is initially confined in a bounded spatial region, then the spatial region where the probability to find the particle does not vanish, expands superluminarly, thus violating Einstein causality by exceeding the speed of light.[4][5] Boundedness of the initial localization region can be weakened to a suitably exponential decay of the localization probability at the initial time. The localization threshold is provided by twice the Compton length of the particle. As a matter of fact, the theorem rules out the Newton-Wigner localization.

The theorem was developed by Gerhard C. Hegerfeldt and first published in 1974.[6][7][8]

See also

References

Шаблон:Reflist


Шаблон:Physics-stub