Русская Википедия:Квантовое состояние

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Другие значения Шаблон:Квантовая механика Квантовое состояние — любое возможное состояние, в котором может находиться квантовая система. Чистое квантовое состояние может быть описано:

Эти описания математически равнозначны. В общем случае квантовое состояние (смешанное) принципиально не может быть описано волновой функцией и должно быть описано матрицей плотности, являющейся неотрицательным самосопряжённым оператором с единичным следом. Квантовые состояния можно интерпретировать как статистические ансамбли с некоторыми фиксированными квантовыми числами.

Файл:HAtomOrbitals.png
Распределение плотности вероятности для электрона в атоме водорода, находящемся в различных состояниях.

Векторы состояний

Для описания возможных состояний заданной квантовой системы применяется математический аппарат гильбертова пространства <math>\mathcal{H}</math>, позволяющий практически полностью описать всё, что может происходить с системой.

Для описания квантового состояния в этом случае вводится так называемый вектор состояния (амплитуда состояния), представляющий собой множество математических величин, которое полностью описывает квантовую систему. К примеру, множество 4 чисел {<math>n \ </math>, <math>\ell \ </math>, <math>m_\ell \ </math>, <math>m_s</math>} определяет состояние электрона в атоме водорода, и называются квантовыми числами электрона.

Подобная конструкция оказывается возможной благодаря принципу суперпозиции для квантовых систем. Он проявляется в том, что если существуют два возможных состояния квантовой системы, причём в первом состоянии некоторая наблюдаемая величина может принимать значения p1, p2, …, а во втором — q1, q2,… , то существует и состояние, называемое их суперпозицией, в котором эта величина может принимать любое из значений p1, p2, …, q1, q2,…. Количественное описание этого явления приведено ниже.

Обозначения бра-кет

Шаблон:Main Будем обозначать вектор состояния, соответствующий состоянию <math>\psi</math>, как <math>\left|\psi\right\rangle</math>. Сопряжённый вектор, соответствующий состоянию <math>\psi</math>, будем обозначать как <math>\left\langle\psi\right|</math>. Скалярное произведение векторов <math>\left|\psi\right\rangle </math> и <math>\left|\phi\right\rangle </math> будем обозначать как <math>\left\langle\phi|\psi\right\rangle</math>, а образ вектора <math>\left|\psi\right\rangle</math> под действием оператора <math>\mathcal F</math> будем обозначать <math>\mathcal F\left|\psi\right\rangle</math>. Символ <math>\left\langle\psi\right|</math> называется бра (англ. bra), а символ <math>\psi</math>, как <math>\left|\psi\right\rangle</math> — кет (англ. ket). Подобные обозначения в целом согласуются с обозначениями обычной линейной алгебры, но более удобны в квантовой механике, так как позволяют более наглядно и коротко называть используемые векторы. Такие обозначения были впервые введены Дираком. Названия векторов образованы разбиением слова bracket (скобка) на две звучные части — bra и ket.

Математический формализм

Шаблон:Main Всякий ненулевой вектор из пространства <math>\mathcal{H}</math> соответствует некому чистому состоянию. Однако векторы, различающиеся лишь умножением на ненулевое комплексное число, отвечают одному физическому состоянию. Иногда полагают, что вектор состояния <math>|\psi\rangle</math> обязан быть «нормирован на единицу»: <math>\langle\psi|\psi\rangle = 1</math> — любой ненулевой вектор приобретает это свойство, если разделить его на свою норму <math>\sqrt{\langle\psi|\psi\rangle}</math>.

Если мы рассмотрим два различных состояния, то суперпозиции (всевозможные линейные комбинации) пары соответствующих им векторов дадут двумерное линейное комплексное пространство. Соответственное множество физических состояний будет представлять двумерную поверхность — сферу Римана.

При рассмотрении квантовой системы, состоящей из двух подсистем, пространство состояний строится в виде тензорного произведения. Подобные системы, помимо комбинаций состояний своих подсистем, имеют также и сцепленные (запутанные) состояния.

«Количество состояний»

Если система имеет хотя бы два физически различных состояния, то мощность множества возможных векторов состояния (даже с точностью до умножения на комплексное число), разумеется, бесконечна. Однако под количеством состояний квантовой системы подразумевают количество линейно независимых состояний, то есть размерность пространства <math>\mathcal{H}</math>. Это вполне соответствует интуиции, поскольку описывает количество возможных исходов измерения; к тому же при тензорном произведении (то есть построении составной системы) размерности пространств перемножаются.

В контексте рассмотрения замкнутой квантовой системы (то есть решения уравнения Шрёдингера) под состояниями могут пониматься только стационарные состояния — собственные векторы гамильтониана, отвечающие различным уровням энергии. В случае конечномерного пространства <math>\mathcal{H}</math> и при отсутствии вырождения число уровней энергии (и соответствующих им состояний) будет равно размерности пространства.

Чистое состояние

Чистое состояние — это полностью указанное квантовое состояние. Если данный квантовый объект (например, какая-то элементарная частица) находится в чистом состоянии, это означает, что у нас есть вся информация о ней. Только чистые состояния полностью можно описать волновыми функциями.

См. также

Литература

Шаблон:Rq Шаблон:ВС