Неравенство Пидо (также неравенство Пидо — Нойберга) — неравенство в геометрии, названное в честь Шаблон:Iw (1910—1998) и Жозефа Нойберга (1840—1926). Неравенство утверждает, что если
<math>a</math>, <math>b</math>, <math>c</math> и <math>a'</math>, <math>b'</math>, <math>c'</math> — длины сторон треугольников <math>ABC</math> и <math>A'B'C'</math>, a <math>S</math> и <math>S'</math> — их площади, тогда
- <math>a^2(-{a'}^2+{b'}^2+{c'}^2)+ b^2({a'}^2-{b'}^2+{c'}^2)+ c^2({a'}^2+{b'}^2-{c'}^2)\ge16SS', </math>
причём равенство достигается тогда и только тогда, когда эти треугольники подобны с парами соответствующих сторон <math>(a,a')</math>, <math>(b,b')</math> и <math>(c,c')</math>.
Выражение слева не только симметрично для перестановок пар <math>(a,a')</math>, <math>(b,b')</math> и <math>(c,c')</math>, но и (что, возможно, не так очевидно) остаётся неизменным, если поменять местами <math>a</math> и <math>a'</math>, <math>b</math> и <math>b'</math>, <math>c</math> и <math>c'</math>. Другими словами, выражение слева является симметрической функцией от пары треугольников.
Частным случаем неравенства Пидо, в котором один из треугольников равносторонний, является Шаблон:Iw.
Пидо обнаружил это неравенство в 1941 году и опубликовал его в нескольких статьях. Позже он узнал, что неравенство было уже известно Нойбергу в XIX веке, который, однако, не доказал, что из равенства следует подобие двух треугольников.
Литература
- Daniel Pedoe: An Inequality Connecting Any Two Triangles. The Mathematical Gazette, Vol. 25, No. 267 (Dec., 1941), pp. 310—311 (JSTOR Шаблон:Wayback)
- Daniel Pedoe: A Two-Triangle Inequality. The American Mathematical Monthly, volume 70, number 9, page 1012, November, 1963.
- Daniel Pedoe: An Inequality for Two Triangles. Proceedings of the Cambridge Philosophical Society, volume 38, part 4, page 397, 1943.
- Claudi Alsina, Roger B. Nelsen: When Less is More: Visualizing Basic Inequalities. MAA, 2009, 978-0-88385-342-9, p. 108 Шаблон:Wayback
- D.S. Mitrinović, Josip Pečarić: About the Neuberg-Pedoe and the Oppenheim inequalities. Journal of Mathematical Analysis and Applications 129(1):196-210 · January 1988 (online copy Шаблон:Wayback)
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|