В математике про вещественное число говорят, что оно имеет ограниченные неполные частные если при его разложении в цепную дробь неполные частные не принимают сколь угодно больших значений.
Шаблон:Рамка
Определение
Цепная дробь
- <math>x = [a_0;a_1,a_2,\dots] = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \dots}}</math>
имеет ограниченные неполные частные если существует число <math>c</math> такое, что <math>a_i \le c</math> для любого <math>i \ge 0</math>.
Шаблон:Конец рамки
Свойства
- если <math>x</math> имеет ограниченные неполные частные, то в двоичном представлении значения функции Минковского в точке <math>x</math> расстояние между соседними единицами ограничено (в этом контексте множество таких чисел можно понимать как широкое обобщение идеи построения множества Кантора).
Гипотеза Зарембы
Шаблон:Основная статья
Разложение рационального числа в цепную дробь всегда конечно, так что все его неполные частные ограничены максимальным из них. Поэтому особый интерес представляет вопрос, можно ли наложить единые ограничения на неполные частные большинства рациональных чисел. Его поставил Станислав Заремба в 1972 году.
Шаблон:Рамка
Гипотеза Зарембы
Существует абсолютная константа <math>c</math> такая, что для всякого знаменателя <math>q \in {\mathbb N}</math> существует числитель <math>a<q</math> такой, что <math>(a, q) = 1</math> и неполные части несократимой дроби
- <math>\frac{a}{q} = [a_1,\dots,a_s]</math>
ограничены неравенством <math>a_i \le c,\ i=1,\dots,s</math>
Шаблон:Конец рамки
Бургейн и Конторович доказали гипотезу для множества чисел <math>q</math> плотности 1.Шаблон:Sfn Для малых значений константы <math>c</math> и отдельных множеств допустимых значений <math>a_i</math> изучаются менее сильные нижние оценки на распределения таких <math>q</math>.[1]
Литература
Примечания
Шаблон:Примечания
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|