Окружности Вилларсо — пара окружностей, получаемых при сечении тора вращения «диагональной» касательной плоскостью, проходящей через центр тора. В силу симметрии тора эта плоскость касается поверхности тора дважды, то есть является бикасательной.
Названы в честь французского астронома и[математика Ивона Вилларсо.
Семейства параллелей, меридианов и два семейства окружностей Вилларсо вкупе составляют четыре попарно трансверсальных семейства окружностей на торе.[1]. Таким же свойством — иметь четыре попарно трансверсальных семейства окружностей — обладают циклиды Дюпена (конформные образы тора вращения).
Формулу для окружностей можно получить перемножением уравнений двух пересекающиеся окружности радиуса <math>r</math> и <math> R</math> (<math>r <R</math>):
Это уравнение четвёртого порядка задаёт две пересекающиеся окружности и, очевидно, является формулой торического сечения. В точках пересечения окружностей пересекаются кривые, принадлежащие одновременно плоскости сечения и поверхности тора. Поэтому в этих точках секущая плоскость касается поверхности тора.