Русская Википедия:Параллелепипед
Параллелепи́пед (Шаблон:Lang-grc[1] от Шаблон:Lang-grc — «параллельный» и Шаблон:Lang-grc — «плоскость») — четырёхугольная призма, все грани которой являются параллелограммами.
Типы параллелепипеда
Различается несколько типов параллелепипедов:
- Наклонный — боковые грани не перпендикулярны основанию.
- Прямой — боковые грани перпендикулярны основанию.
- Прямоугольный — все грани являются прямоугольниками.
- Ромбоэдр — все грани являются равными ромбами.
- Куб — все грани являются квадратами.
Основные элементы
Две грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро — смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями.
Свойства
- Параллелепипед симметричен относительно середины его диагонали.
- Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
- Противолежащие грани параллелепипеда параллельны и равны.
- Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Основные формулы
Прямой параллелепипед
Площадь боковой поверхности Sб=Ро*h, где Ро — периметр основания, h — высота
Площадь полной поверхности Sп=Sб+2Sо, где Sо — площадь основания
Объём V=Sо*h
Прямоугольный параллелепипед
Шаблон:Основная статья Площадь боковой поверхности Sб=2c(a+b), где a, b — стороны основания, c — боковое ребро прямоугольного параллелепипеда
Площадь полной поверхности Sп=2(ab+bc+ac)
Объём V=abc, где a, b, c — измерения прямоугольного параллелепипеда.
Куб
Площадь поверхности: <math>S=6a^2</math>
Объём: <math>V=a^3</math>, где <math>a</math> — ребро куба.
Произвольный параллелепипед
Объём и соотношения в наклонном параллелепипеде часто определяются с помощью векторной алгебры. Объём параллелепипеда равен абсолютной величине смешанного произведения трёх векторов, определяемых тремя сторонами параллелепипеда, исходящими из одной вершины. Соотношение между длинами сторон параллелепипеда и углами между ними даёт утверждение, что определитель Грама указанных трёх векторов равен квадрату их смешанного произведения[2]Шаблон:Rp.
Если координаты четырёх вершин параллелепипеда, не принадлежащих одной грани, имеют целочисленные координаты, то объём этого параллелепипеда есть целое число.
В математическом анализе
В математическом анализе под n-мерным прямоугольным параллелепипедом <math>B</math> понимают множество точек <math>x = (x_1,\ldots,x_n)</math> вида <math>B = \{x|a_1\leqslant x_1\leqslant b_1,\ldots,a_n\leqslant x_n\leqslant b_n\}</math>
Сечение параллелепипеда плоскостью
В зависимости от расположения секущей плоскости и параллелепипеда сечение параллелепипеда может быть треугольником, четырехугольником, пятиугольником и шестиугольником.
См. также
Примечания
Ссылки
- ↑ Древнегреческо-русский словарь Дворецкого «παραλληλεπίπεδον»
- ↑ Шаблон:Книга