Русская Википедия:Размерность Крулля
Размерность Крулля — числовая характеристика коммутативных колец, наибольшая длина цепочки вложенных друг в друга простых идеалов данного кольца. Не обязательно является конечной даже для нётеровых колец.
Размерность Крулля позволяет сформулировать чисто алгебраическое определение размерности алгебраического многообразия: размерность аффинного алгебраического многообразия, заданного идеалом <math>I</math> в кольце многочленов <math>R</math> — это размерность Крулля факторкольца <math>R/I</math>.
Определение
Длина цепочки простых идеалов вида:
- <math>\mathfrak{p}_0\subsetneq \mathfrak{p}_1\subsetneq \ldots \subsetneq \mathfrak{p}_n</math>
принимается за <math>n</math>, то есть считается число строгих включений, а не число идеалов. Размерность Крулля кольца <math>R</math> — это максимум длины по множеству всех цепочек простых идеалов <math>R</math>.
Для простого идеала <math>\mathfrak{p}</math> можно определить его коразмерность (также называют высотой или рангом), обозначаемую <math>\operatorname{codim}(\mathfrak{p})</math>, как максимальную длину цепочки простых идеалов вида <math>\mathfrak{p}_0\subsetneq \mathfrak{p}_1\subsetneq \ldots \subsetneq \mathfrak{p}_n\subseteq \mathfrak{p}</math>.
Примеры
- Размерность произвольного поля равна нулю, более общо, размерность кольца многочленов k[x1, …, xn] равна n. Более того, если R — нётерово кольцо, размерность которого равна n, то размерность кольца R[x] равна n+1. Без гипотезы нётеровости размерность R[x] может находиться в пределах от n+1 до 2n+1.
- Размерность любого кольца главных идеалов равна 1.
- Целостное кольцо является полем тогда и только тогда, когда его размерность равна нулю. Дедекиндовы кольца, не являющиеся полями, имеют размерность 1.
- Нётерово кольцо является артиновым тогда и только тогда, когда его размерность равна нулю.
- Целое расширение кольца имеет ту же размерность, что и исходное кольцо.
- Размерность Крулля кольца R равна размерности его спектра как топологического пространства, то есть максимальной длине цепочки неприводимых замкнутых подмножеств.
Размерность модуля
Если R — коммутативное кольцо и M — R-модуль, размерность Крулля M определяется как размерность Крулля факторкольца по аннулятору модуля:
- <math>\operatorname{dim}_R M := \operatorname{dim}( R/\operatorname{Ann}_R(M))</math>
где AnnR(M) — это ядро естественного отображения R → EndR(M) (сопоставляющего элементу кольца умножение на этот элемент).
Высота идеала
Высота простого идеала <math>\mathfrak p</math> коммутативного кольца <math>R</math> — это супремум длин цепочекШаблон:Переход простых идеалов, содержащихся в <math>\mathfrak p</math>. Например, высота простого идеала, не содержащего других простых идеалов, равна 0. Размерность Крулля кольца <math>R</math> можно определить как супремум высоты по множеству простых идеалов.
В случае нётерова коммутативного кольца, согласно теореме Крулля, высота идеала, порождённого n элементами, не превосходит n.
Определение высоты можно распространить на произвольные идеалы, определив высоту идеала как минимум высот простых идеалов, содержащих данный идеал.
См. также
Литература
- Атья М., Макдональд И. Введение в коммутативную алгебру. — Факториал Пресс, 2003 — ISBN 5-88688-067-4.
- Irving Kaplansky, Commutative rings (revised ed.), University of Chicago Press, 1974, — ISBN 0-226-42454-5. Page 32.
- Шаблон:Citation