Расширение Оре — особый тип расширения кольца, свойства которого относительно хорошо изучены. Названо в честь Ойстина Оре.
Определение
Пусть <math>R</math> — алгебра без делителей нуля, <math>R[t]</math> — свободный (левый) R-модуль, состоящий из всех многочленов вида <math>P = a_n t^n + a_{n-1} t^{n-1}+...+a_0 t_0</math>, где <math>a_i \in R</math>, степени <math>deg(P)=n</math>, <math>\alpha</math> — мономорфизм из <math>R</math> в себя и <math>\delta</math> — некоторое <math>\alpha</math>-дифференцирование на <math>R</math>. Существует единственная структура алгебры на <math>R[t]</math>, т.ч. естественное включение <math>R \rightarrow R[t]</math> является гомоморфизмом и выполняется соотношение <math>ta = \alpha(a)t + \delta(a)</math> для всех <math>a \in R</math>.
Определённая таким образом алгебра называется расширением Оре, ассоциированным с тройкой <math>(R, \alpha, \delta)</math>, и обозначается <math>R[t, \alpha, \delta]</math>.
Конструкция
Пусть <math>M</math> — алгебра, состоящая из всех бесконечных матриц <math>(f_{ij})_{i,j \geq 1}</math>с элементами в алгебре <math>End(R)</math>, т.ч. в каждом столбце и в каждой строке этих матриц лишь конечное число элементов отличны от нуля. Единицей в <math>M</math> является диагональная матрица <math>I</math> с тождественными операторами на диагонали. Пусть <math>\hat{a} \in End(R)</math> — оператор левого умножения на <math>a</math>. Тогда на <math>\alpha</math> и <math>\delta</math> наложены следующие условия:
<math>\alpha \hat{a} = \hat{\alpha(a)}\alpha \text{ и } \delta \hat{a} = \hat{\alpha(a)}\delta + \hat{\delta(a)} </math>. Рассмотрим бесконечную матрицу
<math>T = \begin{pmatrix} \delta & 0 & 0 & 0 & ... \\ \alpha & \delta & 0 & 0 & ... \\ 0 & \alpha & \delta & 0 & ... \\ 0 & 0 & \alpha & \delta & ... \\ ... & ... & ... & ... & ... \end{pmatrix}</math>.
Она позволяет определить инъективное линейное отображение <math>\Phi: R[t] \rightarrow M</math> по формуле <math>\Phi \left(\sum_{i=0}^n a_i t^i \right) = \sum_{i=0}^n (\hat{a}_i I) T^i</math>. Пусть <math>S</math> — подалгебра в <math>M</math>, порождённая элементами <math>T</math> и <math>\hat{a}I</math> (<math>a \in R</math>). Она является образом <math>R[t]</math> при отображении <math>\Phi</math>. Поскольку <math>\Phi</math> является мономорфизмом, то оно индуцирует линейный изоморфизм между <math>R[t]</math> и <math>S</math>, позволяющий индуцировать структуру алгебры <math>S</math> на <math>R[t]</math>.
Литература
Партнерские ресурсы |
---|
Криптовалюты |
|
---|
Магазины |
|
---|
Хостинг |
|
---|
Разное |
- Викиум - Онлайн-тренажер для мозга
- Like Центр - Центр поддержки и развития предпринимательства.
- Gamersbay - лучший магазин по бустингу для World of Warcraft.
- Ноотропы OmniMind N°1 - Усиливает мозговую активность. Повышает мотивацию. Улучшает память.
- Санкт-Петербургская школа телевидения - это федеральная сеть образовательных центров, которая имеет филиалы в 37 городах России.
- Lingualeo.com — интерактивный онлайн-сервис для изучения и практики английского языка в увлекательной игровой форме.
- Junyschool (Джунискул) – международная школа программирования и дизайна для детей и подростков от 5 до 17 лет, где ученики осваивают компьютерную грамотность, развивают алгоритмическое и креативное мышление, изучают основы программирования и компьютерной графики, создают собственные проекты: игры, сайты, программы, приложения, анимации, 3D-модели, монтируют видео.
- Умназия - Интерактивные онлайн-курсы и тренажеры для развития мышления детей 6-13 лет
- SkillBox - это один из лидеров российского рынка онлайн-образования. Среди партнеров Skillbox ведущий разработчик сервисного дизайна AIC, медиа-компания Yoola, первое и самое крупное русскоязычное аналитическое агентство Tagline, онлайн-школа дизайна и иллюстрации Bang! Bang! Education, оператор PR-рынка PACO, студия рисования Draw&Go, агентство performance-маркетинга Ingate, scrum-студия Sibirix, имидж-лаборатория Персона.
- «Нетология» — это университет по подготовке и дополнительному обучению специалистов в области интернет-маркетинга, управления проектами и продуктами, дизайна, Data Science и разработки. В рамках Нетологии студенты получают ценные теоретические знания от лучших экспертов Рунета, выполняют практические задания на отработку полученных навыков, общаются с экспертами и единомышленниками. Познакомиться со всеми продуктами подробнее можно на сайте https://netology.ru, линейка курсов и профессий постоянно обновляется.
- StudyBay Brazil – это онлайн биржа для португалоговорящих студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
- Автор24 — самая большая в России площадка по написанию учебных работ: контрольные и курсовые работы, дипломы, рефераты, решение задач, отчеты по практике, а так же любой другой вид работы. Сервис сотрудничает с более 70 000 авторов. Более 1 000 000 работ уже выполнено.
- StudyBay – это онлайн биржа для англоязычных студентов и авторов! Студент получает уникальную работу любого уровня сложности и больше свободного времени, в то время как у автора появляется дополнительный заработок и бесценный опыт.
|
---|