Русская Википедия:Теллур
Шаблон:Карточка химического элемента Шаблон:Элемент периодической системы Теллу́р (химический символ — Te, от Шаблон:Lang-la) — химический элемент 16-й группы (по устаревшей классификации — главной подгруппы шестой группы, VIA), пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 52.
Простое вещество теллур — это хрупкий, слегка токсичный редкий полуметалл (иногда также относят к неметаллам) серебристо-белого цвета. Теллур является электронным аналогом кислорода, cелена и серы, а также полония. Относится к халькогенам. В плане химических свойств имеет сходства с селеном. Шаблон:-
История
Впервые был найден в 1782 году в золотоносных рудах Трансильвании горным инспектором Францем Йозефом Мюллером (впоследствии барон фон Райхенштейн), на территории Австро-Венгрии. В 1798 году Мартин Генрих Клапрот выделил теллур и определил важнейшие его свойства.
Происхождение названия
От латинского tellus, род. падеж telluris — «Земля» (название предложил Мартин Клапрот)[1][2].
Нахождение в природе
Шаблон:Нет источников в разделе Содержание в земной коре 1Шаблон:E% по массе[3]. Среди всех неметаллов, имеющих стабильные изотопы, является самым редким в земной коре (более редкий неметалл, к тому же ещё и являющийся самым редким элементом в земной коре — астат, ввиду крайне малого периода полураспада имеющихся в природе изотопов, входящих в ряды урана-238 и урана-235). Известно около 100 минералов теллура. Наиболее часты теллуриды меди, свинца, цинка, серебра и золота. Изоморфная примесь теллура наблюдается во многих сульфидах, однако изоморфизм Te — S выражен хуже, чем в ряду Se — S, и в сульфиды входит ограниченная примесь теллура. Среди минералов теллура особое значение имеют алтаит (PbTe), сильванит (AgAuTe4), калаверит (AuTe2), гессит (Ag2Te), креннерит [(Au, Ag)Te], петцит (Ag3AuTe2), мутманнит [(Ag, Au)Te], монбрейит (Au2Te3), нагиагит ([Pb5Au(Te, Sb)]4S5), тетрадимит (Bi2Te2S). Встречаются кислородные соединения теллура, например, ТеО2 — теллуровая охра.
Встречается самородный теллур и вместе с селеном и серой (японская теллуристая сера содержит 0,17 % Те и 0,06 % Se).
Типы месторождений
Большая часть упомянутых минералов развита в низкотемпературных золото-серебряных месторождениях, где они обычно выделяются после основной массы сульфидов совместно с самородным золотом, сульфосолями серебра, свинца, а также с минералами висмута. Несмотря на развитие большого числа теллуровых минералов, главная масса теллура, извлекаемого промышленностью, входит в состав сульфидов других металлов. В частности, теллур в несколько меньшей степени, чем селен, входит в состав халькопирита медно-никелевых месторождений магматического происхождения, а также халькопирита, развитого в медноколчеданных гидротермальных месторождениях. Теллур находится также в составе пирита, халькопирита, молибденита и галенита месторождений порфировых медных руд, полиметаллических месторождений алтайского типа, галенита свинцово-цинковых месторождений, связанных со скарнами, сульфидно-кобальтовых, сурьмяно-ртутных и некоторых других. Содержание теллура в молибдените колеблется в пределах 8—53 г/т, в халькопирите 9—31 г/т, в пирите — до 70 г/т.
Физические свойства
Теллур — хрупкое серебристо-белое вещество с металлическим блеском. В тонких слоях на просвет красно-коричневый, в парах — золотисто-жёлтый. При нагревании приобретает пластичность. Кристаллическая решётка — гексагональная. Коэффициент теплового расширения — 1,68·10−5 K−1. Диамагнетик. Полупроводник с шириной запрещённой зоны 0,34 эВ, тип проводимости — p в нормальных условиях и при повышенной температуре, n — при пониженной температуре (граница перехода — от −80 °C до −100 °C в зависимости от чистоты)[4].
Изотопы
Шаблон:Main Известны 38 нуклидов и 18 ядерных изомеров теллура с атомными числами от 105 до 142[5]. Теллур — самый лёгкий элемент, чьи известные изотопы подвержены альфа-распаду (изотопы от 106Te до 110Te). Атомная масса теллура (127,60 г/моль) превышает атомную массу следующего за ним элемента — иода (126,90 г/моль).
В природе встречается восемь изотопов теллура. Шесть из них, 120Te, 122Te, 123Te, 124Te, 125Te и 126Te — стабильны[5][6]. Остальные два — 128Te и 130Te — радиоактивны, оба они испытывают двойной бета-распад, превращаясь в изотопы ксенона 128Xe и 130Xe, соответственно. Стабильные изотопы составляют лишь 33,3 % от общего количества теллура, встречающегося в природе, что является возможным благодаря чрезвычайно долгим периодам полураспада природных радиоактивных изотопов. Они составляют от 7,9Шаблон:E до 2,2Шаблон:E лет. Изотоп 128Te имеет самый долгий подтверждённый период полураспада из всех радионуклидов — 2,2Шаблон:E лет или 2,2 септиллиона[7] лет, что примерно в 160 триллионов раз больше оценочного возраста Вселенной.
Химические свойства
Шаблон:Нет источников в разделеВ химических соединениях теллур проявляет степени окисления −2; +2; +4; +6. Является аналогом серы и селена, но химически менее активен, чем сера. Растворяется в щелочах, поддается действию азотной и серной кислот, но в разбавленной соляной кислоте растворяется слабо. С водой металлический теллур начинает реагировать при 100 °C[4].
С кислородом образует соединения TeO, TeO2, TeO3. В виде порошка окисляется на воздухе даже при комнатной температуре, образуя оксид TeO2. При нагреве на воздухе сгорает, образуя TeO2 — прочное соединение, обладающее меньшей летучестью, чем сам теллур. Это свойство используется для очистки теллура от оксидов, которые восстанавливают проточным водородом при температуре 500—600 °C. Диоксид теллура плохо растворим в воде, хорошо — в кислых и щелочных растворах[4].
В расплавленном состоянии теллур довольно инертен, поэтому в качестве контейнерных материалов при его плавке применяют графит и кварц.
Теллур образует соединение с водородом при нагревании, легко реагирует с галогенами, взаимодействует с серой, фосфором и металлами. При взаимодействии с разбавленной серной кислотой образует сульфит. Образует слабые кислоты: теллурводородную (H2Te), теллуристую (H2TeO3) и теллуровую (H6TeO6), большинство солей которых плохо растворимы в воде[4].
Растворяется в концентрированной серной кислоте с образованием декаоксотрисульфата(VI) тетрателлура, оксида серы(IV) и воды:
- <math>\mathsf{4Te+4H_2SO_4 (conc.)\longrightarrow \ Te_4S_3O_{10} +SO_2\uparrow \ +4H_2O}</math>
Получение
Основной источник — шламы электролитического рафинирования меди и свинца. Шламы подвергают обжигу, теллур остается в огарке, который промывают соляной кислотой. Из полученного солянокислого раствора теллур выделяют, пропуская через него сернистый газ SO2.
Для разделения селена и теллура добавляют серную кислоту. При этом выпадает диоксид теллура ТеО2, а H2SeO3 остается в растворе.
Из оксида ТеО2 теллур восстанавливают углём.
Для очистки теллура от серы и селена используют его способность под действием восстановителя (Al, Zn) в щелочной среде переходить в растворимый дителлурид динатрия Na2Te2:
- <math>\mathsf{6Te + 2Al + 8NaOH \rightarrow 3Na_2Te_2 + 2Na[Al(OH)_4]}</math>
Для осаждения теллура через раствор пропускают воздух или кислород:
- <math>\mathsf{2Na_2Te_2 + 2H_2O + O_2 \rightarrow 4Te + 4NaOH}</math>
Для получения теллура особой чистоты его хлорируют
- <math>\mathsf{Te + 2Cl_2 \rightarrow TeCl_4}</math>
Образующийся тетрахлорид очищают дистилляцией или ректификацией. Затем тетрахлорид гидролизуют водой:
- <math>\mathsf{TeCl_4 + 2H_2O \rightarrow TeO_2 + 4HCl}</math>,
а образовавшийся ТеО2 восстанавливают водородом:
- <math>\mathsf{TeO_2 + 2H_2 \rightarrow Te + 2H_2O}</math>
Цены
Шаблон:Ориссный раздел Теллур — редкий элемент, и значительный спрос при малом объёме добычи определяет высокую его цену (около $200–300 за кг в зависимости от чистоты), но, несмотря на это, диапазон областей его применения постоянно расширяется.
Применение
Теллур используется для изучения двойного β-распада при определении массы нейтрино
Сплавы
Теллур применяется в производстве сплавов свинца с повышенной пластичностью и прочностью (применяемых, например, при производстве кабелей). При введении 0,05 % теллура потери свинца на растворение под воздействием серной кислоты снижаются в 10 раз, и это используется при производстве свинцово-кислотных аккумуляторов. Также важно то обстоятельство, что легированный теллуром свинец при обработке пластической деформацией не разупрочняется, и это позволяет вести технологию изготовления токоотводов аккумуляторных пластин методом холодной высечки и значительно увеличить срок службы и удельные характеристики аккумулятора.
В составе сплава CZT (теллурид кадмия-цинка, CdZnTe) применяется в производстве детекторов рентгеновского и гамма- излучений, которые работают при комнатной температуре.
Термоэлектрические материалы
Теллур используется в производстве полупроводниковых материалов и, в частности, теллуридов свинца, висмута, сурьмы, цезия. Рассматривается производство теллуридов лантаноидов, их сплавов и сплавов с селенидами металлов для производства термоэлектрогенераторов с весьма высоким (до 72—78 %) КПД, что позволит применить их в энергетике и в автомобильной промышленностиШаблон:Нет АИ.
Так, например, недавноШаблон:Когда обнаружена очень высокая термо-ЭДС в теллуриде марганца (500 мкВ/К) и в его сочетании с селенидами висмута, сурьмы и лантаноидов, что позволяет не только достичь весьма высокого КПД в термогенераторах, но и осуществить уже в одной ступени полупроводникового холодильника охлаждение вплоть до области криогенных (температурный уровень кипения жидкого азота) температур и даже ниже. Лучшим материалом на основе теллура для производства полупроводниковых холодильников в последние годы явился сплав теллура, висмута и цезия, который позволил получить рекордное охлаждение до −237 °C. В то же время, как термоэлектрический материал, перспективен сплав теллур-селен (70 % селена), который имеет коэффициент термо-ЭДС около 1200 мкВ/КШаблон:Нет АИ.
Узкозонные полупроводники
Сплавы КРТ (кадмий-ртуть-теллур) используются для обнаружения излучения от стартов ракет и наблюдения за противником из космоса через атмосферные окна (не имеет значения облачность)Шаблон:Нет АИ. КРТ является одним из наиболее дорогих материалов в современной электронной промышленностиШаблон:Нет АИ.
Высокотемпературная сверхпроводимость
В ряде систем, имеющих в своем составе теллур, обнаружено существование фаз, сверхпроводимость в которых не исчезает при температуре несколько выше температуры кипения жидкого азотаШаблон:Нет АИ.
Производство резины
Отдельной областью применения теллура является его использование в процессе вулканизации каучука.
Производство халькогенидных стёкол
Теллур используется при варке специальных марок стекла (где он применяется в виде диоксида), специальные стёкла, легированные редкоземельными металлами, применяются в качестве активных тел оптических квантовых генераторов.
Кроме того, некоторые стёкла на основе теллура являются полупроводниками, это свойство находит применение в электронике.
Специальные сорта теллурового стекла (достоинство таких стёкол — прозрачность, легкоплавкость и электропроводность), применяются в конструировании специальной химической аппаратуры (реакторов).
Источники света
Ограниченное применение теллур находит для производства ламп с его парами — они имеют спектр, очень близкий к солнечному.
CD-RW
Сплав теллура применяется в перезаписываемых компакт-дисках (в частности, фирмы Mitsubishi Chemical Corporation марки «Verbatim») для создания деформируемого отражающего слоя.
Биологическая роль
Микроколичества теллура всегда содержатся в живых организмах, его биологическая роль не выясненаШаблон:Нет АИ.
Физиологическое действие
Теллур и его летучие соединения токсичны. Попадание в организм вызывает тошноту, бронхиты, пневмонию. ПДК в воздухе колеблется для различных соединений 0,007—0,01 мг/м³, в воде 0,001—0,01 мг/л. Канцерогенность теллура не подтверждена[8].
В целом соединения теллура менее токсичны, чем соединения селенаШаблон:Нет АИ.
При отравлениях теллур выводится из организма в виде отвратительно пахнущих летучих теллурорганических соединений — алкилтеллуридов, в основном диметилтеллурида (CH3)2Te. Их запах напоминает запах чеснока, поэтому при попадании в организм даже малых количеств теллура выдыхаемый человеком воздух приобретает этот запах, что является важным симптомом отравления теллуром[9][10][11].
Примечания
Ссылки
- ↑ Шаблон:Книга Шаблон:Wayback
- ↑ Шаблон:Книга Шаблон:Wayback
- ↑ Шаблон:Книга
- ↑ 4,0 4,1 4,2 4,3 Теллур — статья из Большой советской энциклопедии.
- ↑ 5,0 5,1 Шаблон:Справочник:Nubase2003
- ↑ Изотоп теллур-123 считался радиоактивным (β−-активным с периодом полураспада 6Шаблон:E лет), однако после дополнительных измерений он был признан стабильным в пределах чувствительности эксперимента.
- ↑ 2,2 квадриллиона лет — по длинной шкале.
- ↑ Шаблон:Cite web
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
- ↑ Шаблон:Статья
Шаблон:Выбор языка Шаблон:Периодическая система элементов Шаблон:Ряд Активности Металлов