Электроника:Переменный ток/Реактанс и импеданс – Ёмкость/Параллельные резистивно-ёмкостные цепи

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Перевод: Макаров В. (valemak)
Проверка/Оформление/Редактирование: Мякишев Е.А.


Параллельные резистивно-ёмкостные цепи[1]

Снова возьмём эти компоненты (резистор и конденсатор) с теми же значениями, что были в последовательной схеме из прошлой лекции. Но на этот раз подключим их параллельно и посмотрим, что получится:

Рис. 1. Параллельная RC-цепь. Характеристики для резистора и конденсатора – как и в прошлый раз, но соединение теперь не последовательное, а параллельное.
Рис. 1. Параллельная RC-цепь. Характеристики для резистора и конденсатора – как и в прошлый раз, но соединение теперь не последовательное, а параллельное.

Параллельное соединение резистора и конденсатора

Поскольку источник питания имеет ту же частоту, что и в последовательной схеме из прошлого урока, а резистор и конденсатор имеют те же значения сопротивления и ёмкости, соответственно, эти компоненты также должны иметь предыдущие значения для импеданса. Так что, начальные значения можно взять старые:

Рис. 2. Заполняем таблицу начальными значениями, они такие же, как и в прошлый раз.
Рис. 2. Заполняем таблицу начальными значениями, они такие же, как и в прошлый раз.

Поскольку теперь это параллельная схема, то напряжение будет одинаковым для всех элементов, так что значение для общего напряжения (10 В ∠ 0 °) можно размножить на все столбцы:

Рис. 3. В параллельной цепи напряжение на каждом элементе такое же, как и напряжение на источнике питания.
Рис. 3. В параллельной цепи напряжение на каждом элементе такое же, как и напряжение на источнике питания.

Рассчитываем силу тока по закону Ома

Теперь мы можем применить закон Ома (I = E/Z) по вертикали к двум первым столбцам таблицы, рассчитав силу тока, зная сопротивление и напряжение для резистора и конденсатора:

Рис. 4. Для резистора и конденсатора считаем силу тока по закону Ома.
Рис. 4. Для резистора и конденсатора считаем силу тока по закону Ома.

Как и в цепи постоянного тока, ветвящиеся токи в параллельной цепи переменного тока складываются в общий ток (правило Кирхгофа для силы тока):

Рис. 5. Сначала получаем общую силу тока, а затем общее сопротивление.
Рис. 5. Сначала получаем общую силу тока, а затем общее сопротивление.

Наконец, общий импеданс можно рассчитать с помощью закона Ома (Z = E/I), используя значения E и I в столбце «Всего». Как уже проходили в главе об индуктивности переменного тока, параллельный импеданс также можно рассчитать с помощью обратной формулы, идентичной той, которая используется при вычислении параллельных обычных сопротивлений.

Следует отметить, что данное правило для параллельного импеданса остаётся неизменным, независимо от типа импедансов, подключённых параллельно.

Другими словами, не имеет значения, рассчитываем ли мы схему, состоящую из параллельных резисторов, параллельных катушек индуктивности, параллельных конденсаторов или какой-либо комбинации всех этих разновидностей элементов: для импедансов (Z) все термины являются универсальными и могут аналогично применяться в той же формуле.

Так что формула для параллельного импеданса должна быть вам хорошо знакома:

Рис. 6. Формула для определения параллельного импеданса из частных импедансов.
Рис. 6. Формула для определения параллельного импеданса из частных импедансов.

Единственный недостаток этого уравнения – придётся изрядно потрудиться, особенно если считать без калькулятора, умеющего работать с комплексными числами. Независимо от того, как мы рассчитываем полное сопротивление для нашей параллельной цепи (хоть по закону Ома хоть с помощью обратной формулы), результат будет один и тот же.

Итог

  • С импедансом (Z) можно совершать те же операции, что и с сопротивлением (R) при анализе параллельной цепи: общий импеданс меньше, чем любой частный параллельный импеданс, чтобы найти общий импеданс, можно использовать стандартную обратную формулу. Только обязательно выполняйте все вычисления в комплексной (не скалярной) форме записи! ZВсего = 1/ (1/Z1 + 1/Z2 + … + 1/Zn).
  • Закон Ома для цепей переменного тока: E = IZ; I = E/Z; Z = E/I.
  • Когда в параллельной цепи есть и резисторы и конденсаторы (так же, как в последовательной цепи, где есть оба типа элемента), общий импеданс будет иметь фазовый угол где-то между 0° и -90°. Ток в цепи будет иметь фазовый угол от 0° до +90°.
  • Параллельные цепи переменного тока обладают теми же фундаментальными свойствами, что и параллельные цепи постоянного тока: напряжение одинаково по всей цепи; чтобы найти общий ток нужно сложить токи в ответвлениях, а общий импеданс меньше любого частного импеданса и рассчитывается по обратной формуле.


См.также

Внешние ссылки