Английская Википедия:'t Hooft symbol

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

The Шаблон:'t Hooft symbol is a collection of numbers which allows one to express the generators of the SU(2) Lie algebra in terms of the generators of Lorentz algebra. The symbol is a blend between the Kronecker delta and the Levi-Civita symbol. It was introduced by Gerard 't Hooft. It is used in the construction of the BPST instanton.

Definition

<math>\eta^a_{\mu\nu}</math> is the 't Hooft symbol:

<math>\eta^a_{\mu\nu} = \begin{cases} \epsilon^{a\mu\nu} & \mu,\nu=1,2,3 \\ -\delta^{a\nu} & \mu=4 \\ \delta^{a\mu} & \nu=4 \\ 0 & \mu=\nu=4 \end{cases}</math>

Where <math>\delta^{a\nu}</math> and <math>\delta^{a\mu}</math> are instances of the Kronecker delta, and <math>\epsilon^{a\mu\nu}</math> is the Levi-Civita symbol.

In other words, they are defined by

(<math> a=1,2,3 ;~ \mu,\nu=1,2,3,4 ;~ \epsilon_{1 2 3 4}=+1</math>)

<math> \eta_{a \mu \nu} = \epsilon_{a \mu \nu 4} + \delta_{a \mu} \delta_{\nu 4} - \delta_{a \nu} \delta_{\mu 4} </math>
<math> \bar \eta_{a \mu \nu} = \epsilon_{a \mu \nu 4} - \delta_{a \mu} \delta_{\nu 4} + \delta_{a \nu} \delta_{\mu 4} </math>

where the latter are the anti-self-dual 't Hooft symbols.

Matrix Form

In matrix form, the 't Hooft symbols are

<math>

\eta_{1\mu\nu} = \begin{bmatrix}

   0 & 0 & 0 & 1  \\
   0 & 0 & 1 & 0   \\
   0 & -1 & 0 & 0  \\
   -1 & 0 & 0 & 0 
 \end{bmatrix},

\quad \eta_{2\mu\nu} = \begin{bmatrix}

   0 & 0 & -1 & 0  \\
   0 & 0 & 0 & 1   \\
   1 & 0 & 0 & 0  \\
   0 & -1 & 0 & 0 
 \end{bmatrix},

\quad \eta_{3\mu\nu} = \begin{bmatrix}

   0 & 1 & 0 & 0  \\
   -1 & 0 & 0 & 0   \\
   0 & 0 & 0 & 1  \\
   0 & 0 & -1 & 0 
 \end{bmatrix},

</math> and their anti-self-duals are the following:

<math>

\bar{\eta}_{1\mu\nu} = \begin{bmatrix}

   0 & 0 & 0 & -1  \\
   0 & 0 & 1 & 0   \\
   0 & -1 & 0 & 0  \\
   1 & 0 & 0 & 0 
 \end{bmatrix},

\quad \bar{\eta}_{2\mu\nu} = \begin{bmatrix}

   0 & 0 & -1 & 0  \\
   0 & 0 & 0 & -1   \\
   1 & 0 & 0 & 0  \\
   0 & 1 & 0 & 0 
 \end{bmatrix},

\quad \bar{\eta}_{3\mu\nu} = \begin{bmatrix}

   0 & 1 & 0 & 0  \\
   -1 & 0 & 0 & 0   \\
   0 & 0 & 0 & -1  \\
   0 & 0 & 1 & 0 
 \end{bmatrix}.

</math>

Properties

They satisfy the self-duality and the anti-self-duality properties:

<math>

\eta_{a\mu\nu} = \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} \eta_{a\rho\sigma} \ , \qquad \bar\eta_{a\mu\nu} = - \frac{1}{2} \epsilon_{\mu\nu\rho\sigma} \bar\eta_{a\rho\sigma} \ </math>

Some other properties are

<math>

\epsilon_{abc} \eta_{b\mu\nu} \eta_{c\rho\sigma} = \delta_{\mu\rho} \eta_{a\nu\sigma} + \delta_{\nu\sigma} \eta_{a\mu\rho} - \delta_{\mu\sigma} \eta_{a\nu\rho} - \delta_{\nu\rho} \eta_{a\mu\sigma} </math>

<math>

\eta_{a\mu\nu} \eta_{a\rho\sigma} = \delta_{\mu\rho} \delta_{\nu\sigma} - \delta_{\mu\sigma} \delta_{\nu\rho} + \epsilon_{\mu\nu\rho\sigma} \ , </math>

<math>

\eta_{a\mu\rho} \eta_{b\mu\sigma} = \delta_{ab} \delta_{\rho\sigma} + \epsilon_{abc} \eta_{c\rho\sigma} \ , </math>

<math>

\epsilon_{\mu\nu\rho\theta} \eta_{a\sigma\theta} = \delta_{\sigma\mu} \eta_{a\nu\rho} + \delta_{\sigma\rho} \eta_{a\mu\nu} - \delta_{\sigma\nu} \eta_{a\mu\rho} \ , </math>

<math>

\eta_{a\mu\nu} \eta_{a\mu\nu} = 12 \ ,\quad \eta_{a\mu\nu} \eta_{b\mu\nu} = 4 \delta_{ab} \ ,\quad \eta_{a\mu\rho} \eta_{a\mu\sigma} = 3 \delta_{\rho\sigma} \ . </math>

The same holds for <math>\bar\eta</math> except for

<math>

\bar\eta_{a\mu\nu} \bar\eta_{a\rho\sigma} = \delta_{\mu\rho} \delta_{\nu\sigma} - \delta_{\mu\sigma} \delta_{\nu\rho} - \epsilon_{\mu\nu\rho\sigma} \ . </math>

and

<math>

\epsilon_{\mu\nu\rho\theta} \bar\eta_{a\sigma\theta} = -\delta_{\sigma\mu} \bar\eta_{a\nu\rho} - \delta_{\sigma\rho} \bar\eta_{a\mu\nu} + \delta_{\sigma\nu} \bar\eta_{a\mu\rho} \ , </math>

Obviously <math>\eta_{a\mu\nu} \bar\eta_{b\mu\nu} = 0</math> due to different duality properties.

Many properties of these are tabulated in the appendix of 't Hooft's paper[1] and also in the article by Belitsky et al.[2]

See also

References

Шаблон:Reflist