Английская Википедия:11 (number)

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Other uses Шаблон:Infobox number 11 (eleven) is the natural number following 10 and preceding 12. It is the first repdigit. In English, it is the smallest positive integer whose name has three syllables.

Шаблон:Anchor

Name

"Eleven" derives from the Old English Шаблон:Lang, which is first attested in Bede's late 9th-century Ecclesiastical History of the English People.Шаблон:Refn[1] It has cognates in every Germanic language (for example, German Шаблон:Lang), whose Proto-Germanic ancestor has been reconstructed as Шаблон:Lang,[2] from the prefix Шаблон:Lang (adjectival "one") and suffix Шаблон:Lang, of uncertain meaning.[1] It is sometimes compared with the Lithuanian Шаблон:Lang, though Шаблон:Lang is used as the suffix for all numbers from 11 to 19 (analogously to "-teen").[1]

The Old English form has closer cognates in Old Frisian, Saxon, and Norse, whose ancestor has been reconstructed as Шаблон:Lang. This was formerly thought to be derived from Proto-Germanic Шаблон:Lang ("ten");[1][3] it is now sometimes connected with Шаблон:Lang or Шаблон:Lang ("left; remaining"), with the implicit meaning that "one is left" after counting to ten.[1]

In languages

While 11 has its own name in Germanic languages such as English, German, or Swedish, and some Latin-based languages such as Spanish, Portuguese, and French, it is the first compound number in many other languages: Chinese Шаблон:Lang Шаблон:Lang, Korean Шаблон:Lang Шаблон:Lang or Шаблон:Lang Шаблон:Lang.

In mathematics

Eleven is the fifth prime number, and the first two-digit numeric palindrome in decimal. It forms a twin prime with 13,[4] and it is the first member of the second prime quadruplet (11, 13, 17, 19).[5] 11 is the first prime exponent that does not yield a Mersenne prime, where <math>2^{11}-1=2047</math>, which is composite. On the other hand, the eleventh prime number 31 is the third Mersenne prime, while the thirty-first prime number 127 is not only a Mersenne prime but also the second double Mersenne prime. 11 is also the fifth Heegner number, meaning that the ring of integers of the field <math>\mathbb{Q}(\sqrt{-11})</math> has the property of unique factorization and class number 1. 11 is the first prime repunit <math>R_{2}</math> in decimal (and simply, the first repunit),[6] as well as the second unique prime in base ten.[7] It is the first strong prime,[8] the second good prime,[9] the third super-prime, the fourth Lucas prime,[10] and the fifth consecutive supersingular prime.[11]

The rows of Pascal's triangle can be seen as representation of the powers of 11.[12]

11 of 35 hexominoes can fold in a net to form a cube, while 11 of 66 octiamonds can fold into a regular octahedron.

Файл:Fotothek df tg 0004812 Geometrie ^ Architektur ^ Festungsbau ^ Vermessung.jpg
Copper engraving of a hendecagon, by Anton Ernst Burkhard von Birckenstein (1698)

An 11-sided polygon is called a hendecagon, or undecagon. The complete graph <math>K_{11}</math> has a total of 55 edges, which collectively represent the diagonals and sides of a hendecagon.

A regular hendecagon cannot be constructed with a compass and straightedge alone, as 11 is not a product of distinct Fermat primes, and it is also the first polygon that is not able to be constructed with the aid of an angle trisector.[13]

11 and some of its multiples appear as counts of uniform tessellations in various dimensions and spaces; there are:

22 edge-to-edge uniform tilings with convex and star polygons, and 33 uniform tilings with zizgzag apeirogons that alternate between two angles.[15][16]
22 regular complex apeirohedra of the form p{a}q{b}r, where 21 exist in <math>\Complex^2</math> and 1 in <math>\Complex^3</math>.[18]
11 total regular hyperbolic honeycombs in the fourth dimension: 9 compact solutions are generated from regular 4-polytopes and regular star 4-polytopes, alongside 2 paracompact solutions.[19]

The 11-cell is a self-dual abstract 4-polytope with 11 vertices, 55 edges, 55 triangular faces, and 11 hemi-icosahedral cells. It is universal in the sense that it is the only abstract polytope with hemi-icosahedral facets and hemi-dodecahedral vertex figures. The 11-cell contains the same number of vertices and edges as the complete graph <math>K_{11}</math> and the 10-simplex, a regular polytope in 10 dimensions.

There are 11 orthogonal curvilinear coordinate systems (to within a conformal symmetry) in which the 3-variable Helmholtz equation can be solved using the separation of variables technique.

Mathieu group <math>\mathrm{M}_{11}</math> is the smallest of twenty-six sporadic groups, defined as a sharply 4-transitive permutation group on eleven objects. It has order <math>7920 =2^{4}\cdot3^{2}\cdot5\cdot11 = 8\cdot9\cdot10\cdot11</math>, with 11 as its largest prime factor, and a minimal faithful complex representation in ten dimensions. Its group action is the automorphism group of Steiner system <math>\operatorname{S}(4,5,11)</math>, with an induced action on unordered pairs of points that gives a rank 3 action on 55 points. Mathieu group <math>\mathrm{M}_{12}</math>, on the other hand, is formed from the permutations of projective special linear group <math>\operatorname{PSL_2}(1,1)</math> with those of <math>(2,10)(3,4)(5,9)(6,7)</math>. It is the second-smallest sporadic group, and holds <math>\mathrm{M}_{11}</math> as a maximal subgroup and point stabilizer, with an order equal to <math>95040 = 2^6\cdot3^3\cdot5\cdot11 = 8\cdot9\cdot10\cdot11\cdot12</math>, where 11 is also its largest prime factor, like <math>\mathrm{M}_{11}</math>. <math>\mathrm{M}_{12}</math> also centralizes an element of order 11 in the friendly giant <math>\mathrm {F}_{1}</math>, the largest sporadic group, and holds an irreducible faithful complex representation in eleven dimensions.

The first eleven prime numbers (from 2 through 31) are consecutive supersingular primes that divide the order of the friendly giant, with the remaining four supersingular primes (41, 47, 59, and 71) lying between five non-supersingular primes.[11] Only five of twenty-six sporadic groups do not contain 11 as a prime factor that divides their group order (<math>\mathrm{J}_2</math>, <math>\mathrm{J}_3</math>, <math>\mathrm{Ru}</math>, <math>\mathrm{He}</math>, and <math>\mathrm{Th}</math>). 11 is also not a prime factor of the order of the Tits group <math>\mathrm{T}</math>, which is sometimes categorized as non-strict group of Lie type, or sporadic group.

11 is the second member of the second pair (5, 11) of Brown numbers. Only three such pairs of numbers <math>n</math> and <math>m</math> where <math>n!+1 = m^2</math> are known; the largest pair (7, 71) satisfies <math>5041 = 7!+1</math>. In this last pair 5040 is the factorial of 7, which is divisible by all integers less than 13 with the exception of 11. The members of the first pair (4,5) multiply to 20 — the prime index of 71— that is also eleventh composite number.[20]

Within safe and Sophie Germain primes of the form <math>2p+1</math>, 11 is the third safe prime, from a <math>p</math> of 5,[21] and the fourth Sophie Germain prime, which yields 23.[22]

In decimal

11 is the smallest two-digit prime number. On the seven-segment display of a calculator, it is both a strobogrammatic prime and a dihedral prime.[23]

Multiples of 11 by one-digit numbers yield palindromic numbers with matching double digits: 00, 11, 22, 33, 44, etc.

The sum of the first 11 non-zero positive integers, equivalently the 11th triangular number, is 66. On the other hand, the sum of the first 11 integers, from zero to ten, is 55.

The first four powers of 11 yield palindromic numbers: 111 = 11, 112 = 121, 113 = 1331, and 114 = 14641.

11 is the 11th index or member in the sequence of palindromic numbers, and 121, equal to <math>11\times 11</math>, is the 22nd.[24]

The factorial of 11, <math>11!=39916800</math>, has about a 0.2% difference to the round number <math>4\times 10^{7}</math>, or 40 million. Among the first 100 factorials, the next closest to a round number is 96 (<math>96! \approx 9.91678\times 10^{149}</math>), which is about 0.8% less than 10149.[25]

If a number is divisible by 11, reversing its digits will result in another multiple of 11. As long as no two adjacent digits of a number added together exceed 9, then multiplying the number by 11, reversing the digits of the product, and dividing that new number by 11 will yield a number that is the reverse of the original number; as in:

142,312 × 11 = 1,565,432 → 2,345,651 ÷ 11 = 213,241.

Divisibility tests

A simple test to determine whether an integer is divisible by 11 is to take every digit of the number in an odd position and add them, then take the remaining digits and add them. If the difference between the two sums is a multiple of 11, including 0, then the number is divisible by 11.[26] For instance, with the number 65,637: Шаблон:Block indent

This technique also works with groups of digits rather than individual digits, so long as the number of digits in each group is odd, although not all groups have to have the same number of digits. If one uses three digits in each group, one gets from 65,637 the calculation, Шаблон:Block indent

Another test for divisibility is to separate a number into groups of two consecutive digits (adding a leading zero if there is an odd number of digits), and then add the numbers so formed; if the result is divisible by 11, the number is divisible by 11: Шаблон:Block indent

This also works by adding a trailing zero instead of a leading one, and with larger groups of digits, provided that each group has an even number of digits (not all groups have to have the same number of digits): Шаблон:Block indent

Multiplying 11

An easy way to multiply numbers by 11 in base 10 is:

If the number has:

  • 1 digit, replicate the digit: 2 × 11 becomes 22.
  • 2 digits, add the 2 digits and place the result in the middle: 47 × 11 becomes 4 (11) 7 or 4 (10+1) 7 or (4+1) 1 7 or 517.
  • 3 digits, keep the first digit in its place for the result's first digit, add the first and second digits to form the result's second digit, add the second and third digits to form the result's third digit, and keep the third digit as the result's fourth digit. For any resulting numbers greater than 9, carry the 1 to the left. Шаблон:Pb 123 × 11 becomes 1 (1+2) (2+3) 3 or 1353. Шаблон:Pb 481 × 11 becomes 4 (4+8) (8+1) 1 or 4 (10+2) 9 1 or (4+1) 2 9 1 or 5291.
  • 4 or more digits, follow the same pattern as for 3 digits.

List of basic calculations

Multiplication 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 50 100 1000
11 × x 11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220 275 550 1100 11000
Division 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
11 ÷ x 11 5.5 3.Шаблон:Overline 2.75 2.2 1.8Шаблон:Overline 1.Шаблон:Overline 1.375 1.Шаблон:Overline 1.1 1 0.91Шаблон:Overline 0.Шаблон:Overline 0.7Шаблон:Overline 0.7Шаблон:Overline
x ÷ 11 0.Шаблон:Overline 0.Шаблон:Overline 0.Шаблон:Overline 0.Шаблон:Overline 0.Шаблон:Overline 0.Шаблон:Overline 0.Шаблон:Overline 0.Шаблон:Overline 0.Шаблон:Overline 0.Шаблон:Overline 1 1.Шаблон:Overline 1.Шаблон:Overline 1.Шаблон:Overline 1.Шаблон:Overline
Exponentiation 1 2 3 4 5 6 7 8 9 10 11
11Шаблон:Sup 11 121 1331 14641 161051 1771561 19487171 214358881 2357947691 25937424601 285311670611
xШаблон:Sup 1 2048 177147 4194304 48828125 362797056 1977326743 8589934592 31381059609 100000000000 285311670611

In other bases

In duodecimal and higher bases (such as hexadecimal), 11 is represented as B, E, Z or ↋ (el), where 10 is A, T, W, X or ↊ (dek).

Radix 1 5 10 15 20 25 30 40 50 60 70 80 90 100
110 120 130 140 150 200 250 500 1000 10000 100000 1000000
xШаблон:Sub 1 5 AШаблон:Sub 14Шаблон:Sub 19Шаблон:Sub 23Шаблон:Sub 28Шаблон:Sub 37Шаблон:Sub 46Шаблон:Sub 55Шаблон:Sub 64Шаблон:Sub 73Шаблон:Sub 82Шаблон:Sub 91Шаблон:Sub
A0Шаблон:Sub AAШаблон:Sub 109Шаблон:Sub 118Шаблон:Sub 127Шаблон:Sub 172Шаблон:Sub 208Шаблон:Sub 415Шаблон:Sub 82AШаблон:Sub 7572Шаблон:Sub 6914AШаблон:Sub 623351Шаблон:Sub

In science

Astronomy

In religion and spirituality

Christianity

After Judas Iscariot was disgraced, Jesus's remaining apostles were sometimes called "the Eleven" (Шаблон:Bibleverse; Шаблон:Bibleverse and Шаблон:Bibleverse-nb), even after Matthias was added to bring the number back to 12, as in Acts 2:14:[28] Peter stood up with the eleven (New International Version). The New Living Translation says Peter stepped forward with the eleven other apostles, making clear that the number of apostles was now 12.

Saint Ursula is said to have been martyred in the 3rd or 4th century in Cologne with a number of companions, whose reported number "varies from five to eleven".[29] A legend that Ursula died with 11,000 virgin companions[30] has been thought to appear from misreading XI. M. V. (Latin abbreviation for "Eleven martyr virgins") as "Eleven thousand virgins".

Islam

Joseph's eleven brothers and parents are allegorically referred to in the Quran, and his dream came true when in the end they prostrated before him in Egypt.[31] Шаблон:Quote

Babylonian

In the Enûma Eliš the goddess Tiamat creates 11 monsters to avenge the death of her husband, Apsû.

Mysticism

The number 11 (alongside its multiples 22 and 33) are master numbers in numerology, especially in New Age.[32] In astrology, Aquarius is the 11th astrological sign of the Zodiac.[33]

In music

Шаблон:See also

In sports

In the military

In computing

In Canada

In other fields

See also

Шаблон:Portal

References

Шаблон:Reflist

External links

Шаблон:Wiktionary Шаблон:Commons category

Шаблон:Integers Шаблон:Authority control

  1. 1,0 1,1 1,2 1,3 1,4 Oxford English Dictionary, 1st ed. "eleven, adj. and n." Oxford University Press (Oxford), 1891.
  2. Шаблон:Cite book
  3. Шаблон:Citation.
  4. Шаблон:Cite OEIS
  5. Шаблон:Cite OEIS
    "{11, 13, 17, 19} is the only prime quadruplet {p, p+2, p+6, p+8} of the form {Q-4, Q-2, Q+2, Q+4} where Q is a product of a pair of twin primes {q, q+2} (for prime q = 3) because numbers Q-2 and Q+4 are for q>3 composites of the form 3*(12*k^2-1) and 3*(12*k^2+1) respectively (k is an integer)."
  6. Шаблон:Cite web
  7. Шаблон:Cite web
  8. Шаблон:Cite OEIS
  9. Шаблон:Cite web
  10. Шаблон:Cite web
  11. 11,0 11,1 Шаблон:Cite OEIS
  12. Шаблон:Cite journal
  13. Шаблон:Cite journal
  14. Шаблон:Cite journal
  15. Шаблон:Cite book
  16. Шаблон:Cite book
  17. Шаблон:Cite book
  18. Шаблон:Cite book
  19. 19,0 19,1 Шаблон:Cite journal
  20. Шаблон:Cite OEIS
  21. Шаблон:Cite web
  22. Шаблон:Cite web
  23. Шаблон:Cite web
  24. Шаблон:Cite OEIS
  25. Шаблон:Cite web
  26. Шаблон:Cite book
  27. Шаблон:Cite web
  28. Шаблон:Cite web
  29. Ursulines of the Roman Union, Province of Southern Africa, St. Ursula and Companions Шаблон:Webarchive, accessed 10 July 2016
  30. Four scenes from the life of St Ursula, accessed 10 July 2016
  31. Шаблон:Cite web
  32. Шаблон:Cite book
  33. Шаблон:Cite encyclopedia
  34. Шаблон:Citation
  35. Шаблон:Cite web
  36. Шаблон:Citation
  37. Шаблон:Citation
  38. Шаблон:Citation
  39. Шаблон:Citation
  40. Шаблон:Citation
  41. Шаблон:Citation
  42. Шаблон:Citation
  43. Шаблон:Citation
  44. Шаблон:Citation
  45. Шаблон:Citation
  46. Шаблон:Citation
  47. Шаблон:Citation
  48. Шаблон:Citation
  49. Шаблон:Citation
  50. Шаблон:Citation
  51. Шаблон:Citation
  52. Шаблон:Citation
  53. Шаблон:Cite web
  54. Шаблон:Cite book
  55. Шаблон:Cite web
  56. Шаблон:Cite web