Английская Википедия:16-cell honeycomb

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

16-cell honeycomb
Файл:Demitesseractic tetra hc.png
Perspective projection: the first layer of adjacent 16-cell facets.
Type Regular 4-honeycomb
Uniform 4-honeycomb
Family Alternated hypercube honeycomb
Schläfli symbol {3,3,4,3}
Coxeter diagrams Шаблон:CDD
Шаблон:CDD = Шаблон:CDD
Шаблон:CDD = Шаблон:CDD
Шаблон:CDD
4-face type {3,3,4} Файл:Schlegel wireframe 16-cell.png
Cell type {3,3} Файл:Tetrahedron.png
Face type {3}
Edge figure cube
Vertex figure Файл:24-cell t0 F4.svg
24-cell
Coxeter group <math>{\tilde{F}}_4</math> = [3,3,4,3]
Dual {3,4,3,3}
Properties vertex-transitive, edge-transitive, face-transitive, cell-transitive, 4-face-transitive

In four-dimensional Euclidean geometry, the 16-cell honeycomb is one of the three regular space-filling tessellations (or honeycombs), represented by Schläfli symbol {3,3,4,3}, and constructed by a 4-dimensional packing of 16-cell facets, three around every face.

Its dual is the 24-cell honeycomb. Its vertex figure is a 24-cell. The vertex arrangement is called the B4, D4, or F4 lattice.[1][2]

Alternate names

  • Hexadecachoric tetracomb/honeycomb
  • Demitesseractic tetracomb/honeycomb

Coordinates

Vertices can be placed at all integer coordinates (i,j,k,l), such that the sum of the coordinates is even.

D4 lattice

The vertex arrangement of the 16-cell honeycomb is called the D4 lattice or F4 lattice.[2] The vertices of this lattice are the centers of the 3-spheres in the densest known packing of equal spheres in 4-space;[3] its kissing number is 24, which is also the same as the kissing number in R4, as proved by Oleg Musin in 2003.[4][5]

The related DШаблон:Sup sub lattice (also called DШаблон:Sup sub) can be constructed by the union of two D4 lattices, and is identical to the C4 lattice:[6]

Шаблон:CDDШаблон:CDD = Шаблон:CDD = Шаблон:CDD

The kissing number for DШаблон:Sup sub is 23 = 8, (2n – 1 for n < 8, 240 for n = 8, and 2n(n – 1) for n > 8).[7]

The related DШаблон:Sup sub lattice (also called DШаблон:Sup sub and CШаблон:Sup sub) can be constructed by the union of all four D4 lattices, but it is identical to the D4 lattice: It is also the 4-dimensional body centered cubic, the union of two 4-cube honeycombs in dual positions.[8]

Шаблон:CDDШаблон:CDDШаблон:CDDШаблон:CDD = Шаблон:CDD = Шаблон:CDDШаблон:CDD.

The kissing number of the DШаблон:Sup sub lattice (and D4 lattice) is 24[9] and its Voronoi tessellation is a 24-cell honeycomb, Шаблон:CDD, containing all rectified 16-cells (24-cell) Voronoi cells, Шаблон:CDD or Шаблон:CDD.[10]

Symmetry constructions

There are three different symmetry constructions of this tessellation. Each symmetry can be represented by different arrangements of colored 16-cell facets.

Coxeter group Schläfli symbol Coxeter diagram Vertex figure
Symmetry
Facets/verf
<math>{\tilde{F}}_4</math> = [3,3,4,3] {3,3,4,3} Шаблон:CDD Шаблон:CDD
[3,4,3], order 1152
24: 16-cell
<math>{\tilde{B}}_4</math> = [31,1,3,4] = h{4,3,3,4} Шаблон:CDD = Шаблон:CDD Шаблон:CDD
[3,3,4], order 384
16+8: 16-cell
<math>{\tilde{D}}_4</math> = [31,1,1,1] {3,31,1,1}
= h{4,3,31,1}
Шаблон:CDD = Шаблон:CDD Шаблон:CDD
[31,1,1], order 192
8+8+8: 16-cell
2×½<math>{\tilde{C}}_4</math> = [[(4,3,3,4,2+)]] ht0,4{4,3,3,4} Шаблон:CDD 8+4+4: 4-demicube
8: 16-cell

Related honeycombs

It is related to the regular hyperbolic 5-space 5-orthoplex honeycomb, {3,3,3,4,3}, with 5-orthoplex facets, the regular 4-polytope 24-cell, {3,4,3} with octahedral (3-orthoplex) cell, and cube {4,3}, with (2-orthoplex) square faces.

It has a 2-dimensional analogue, {3,6}, and as an alternated form (the demitesseractic honeycomb, h{4,3,3,4}) it is related to the alternated cubic honeycomb.

Шаблон:D5 honeycombs

See also

Regular and uniform honeycombs in 4-space:

Notes

Шаблон:Reflist

References

  • Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, Шаблон:ISBN
    • pp. 154–156: Partial truncation or alternation, represented by h prefix: h{4,4} = {4,4}; h{4,3,4} = {31,1,4}, h{4,3,3,4} = {3,3,4,3}, ...
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, Шаблон:ISBN [1]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • George Olshevsky, Uniform Panoploid Tetracombs, Manuscript (2006) (Complete list of 11 convex uniform tilings, 28 convex uniform honeycombs, and 143 convex uniform tetracombs)
  • Шаблон:KlitzingPolytopes x3o3o4o3o - hext - O104
  • Шаблон:Cite book

Шаблон:Honeycombs

  1. Шаблон:Cite web
  2. 2,0 2,1 Шаблон:Cite web
  3. Conway and Sloane, Sphere packings, lattices, and groups, 1.4 n-dimensional packings, p.9
  4. Conway and Sloane, Sphere packings, lattices, and groups, 1.5 Sphere packing problem summary of results, p. 12
  5. Шаблон:Cite journal
  6. Conway and Sloane, Sphere packings, lattices, and groups, 7.3 The packing D3+, p.119
  7. Conway and Sloane, Sphere packings, lattices, and groups, p. 119
  8. Conway and Sloane, Sphere packings, lattices, and groups, 7.4 The dual lattice D3*, p.120
  9. Conway and Sloane, Sphere packings, lattices, and groups, p. 120
  10. Conway and Sloane, Sphere packings, lattices, and groups, p. 466