Английская Википедия:2019 in paleontology

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Year nav topic20 Шаблон:Year in paleontology header

Flora

Plants

Шаблон:Main

Fungi

Name Novelty Status Authors Age Type locality Country Notes Images

Chaetosphaeria elsikii[1]

Sp. nov

Valid

Pound et al.

Miocene

Brassington Formation

Шаблон:Flag

A fungus, a species of Chaetosphaeria.

Meliolinites neogenicus[2]

Sp. nov

Valid

Khan, Bera & Bera

Late Pliocene to early Pleistocene

Kimin Formation

Шаблон:Flag

A fungus belonging to the family Meliolaceae.

Meliolinites pliocenicus[3]

Sp. nov

Valid

Bera, Khan & Bera

Pliocene

Subansiri Formation

Шаблон:Flag

A fungus belonging to the family Meliolaceae.

Ophiocordyceps dominicanus[4]

Sp. nov

Valid

Poinar & Vega

Burdigalian

Dominican amber

Шаблон:Flag

A fungus, a species of Ophiocordyceps. Announced in 2019; the final version of the article naming it was published in 2020.

Ourasphaira[5]

Gen. et sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation

Шаблон:Flag

A process-bearing multicellular eukaryotic microorganism. Argued to be an early fungus by Loron et al. (2019).[6] Genus includes new species O. giraldae.

Palaeoglomus strotheri[7]

Sp. nov

Valid

Retallack

Ordovician (Darriwilian)

Lenoir Formation

Шаблон:Flag
(Шаблон:Flag)

Phomites neogenicus[8]

Sp. nov

Valid

Vishnu, Khan & Bera in Vishnu et al.

Neogene

Шаблон:Flag

A fungus similar to members of the genus Phoma.

Phomites siwalicus[8]

Sp. nov

Valid

Vishnu, Khan & Bera in Vishnu et al.

Neogene

Шаблон:Flag

A fungus similar to members of the genus Phoma.

Polycephalomyces baltica[4]

Sp. nov

Valid

Poinar & Vega

Priabonian

Baltic amber

Шаблон:Flag
(Шаблон:Flag)

A fungus belonging to the family Ophiocordycipitaceae. Announced in 2019; the final version of the article naming it was published in 2020.

Priscadvena[9]

Gen. et sp. nov

Valid

Poinar & Vega

Late Cretaceous (Cenomanian)

Burmese amber

Шаблон:Flag

A kickxellomycotine trichomycete in the new order Priscadvenales.
Type species P. corymbosa.

Prototaxites honeggeri[7]

Sp. nov

Valid

Retallack

Ordovician (Darriwilian)

Lenoir Formation

Шаблон:Flag
(Шаблон:Flag)

Rhexoampullifera stogieana[1]

Sp. nov

Valid

Pound et al.

Miocene

Brassington Formation

Шаблон:Flag

A fungus belonging to the group Ascomycota.

Rhexoampullifera sufflata[1]

Sp. nov

Valid

Pound et al.

Miocene

Brassington Formation

Шаблон:Flag

A fungus belonging to the group Ascomycota.

Paleomycological research

Sponges

Research

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Acanthochaetetes huauclillensis[16]

Sp. nov

Valid

Sánchez-Beristain, García-Barrera & Moreno-Bedmar

Early Cretaceous (late Hauterivian to early Barremian)

Шаблон:Flag

A chaetetid sponge.

Allosacus pedunculatus[17]

Sp. nov

Valid

Carrera & Sumrall

Ordovician

Lenoir Limestone

Шаблон:Flag
(Шаблон:Flag)

A member of the family Streptosolenidae.

Auraeopirania[18]

Gen. et comb. et 3 sp. nov

Valid

Botting et al.

Ordovician

Fezouata Formation
Llanfallteg Formation
Ningkuo Formation

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag

A member of Protomonaxonida belonging to the family Piraniidae. The type species is "Pirania" auraeum Botting (2007); genus also includes new species A. pinwyddeni, A. pykitia and A. sciurucauda.

Cannapirania[18]

Gen. et 2 sp. et comb. nov

Valid

Botting et al.

Ordovician

Llanfawr Mudstones Formation
Wenchang Formation

Шаблон:Flag
Шаблон:Flag

A member of Protomonaxonida belonging to the family Piraniidae. The type species is C. canna; genus also includes new species C. vermiformis', as well as "Pirania" llanfawrensis Botting (2004).

Carduispongia[19]

Gen. et sp. nov

Valid

Nadhira et al.

Silurian (Wenlock)

Coalbrookdale Formation

Шаблон:Flag

A sponge, possibly a calcareous sponge. The type species is C. pedicula.

Centrosia clavata[20]

Sp. nov

Valid

Świerczewska-Gładysz, Jurkowska & Niedźwiedzki

Late Cretaceous (late Turonian)

Opole Basin

Шаблон:Flag

A hexactinellid sponge belonging to the family Callodictyonidae.

Crateromorpha opolensis[20]

Sp. nov

Valid

Świerczewska-Gładysz, Jurkowska & Niedźwiedzki

Late Cretaceous (late Turonian and early Coniacian)

Opole Basin

Шаблон:Flag

A hexactinellid sponge belonging to the family Rossellidae.

Cystostroma primordia[21]

Sp. nov

Valid

Jeon et al.

Ordovician (Floian to Darriwilian)

Duwibong Formation
Hunghuayuan Formation

Шаблон:Flag
Шаблон:Flag

A member of Stromatoporoidea.

Eoghanospongia[22]

Gen. et sp. nov

Valid

Botting et al.

Silurian (Telychian)

Шаблон:Flag

A hexactinellid sponge. Genus includes new species E. carlinslowpensis. Announced in 2019; the final version of the article naming it was published in 2020.

Hamptonia jianhensis[23]

Sp. nov

Valid

Wang et al.

Cambrian Stage 4

Шаблон:Flag

A sponge.

Jianhella[24]

Gen. et sp. nov

Valid

Wang et al.

Cambrian Stage 4

Balang Formation

Шаблон:Flag

A leptomitid sponge. Genus includes new species J. obconica.

Monoplectroninia malonei[25]

Sp. nov

Valid

McSweeney, Buckeridge & Kelly

Early Miocene

Batesford Limestone

Шаблон:Flag

A calcareous sponge belonging to the family Minchinellidae.

Pachastrella rara[20]

Sp. nov

Valid

Świerczewska-Gładysz, Jurkowska & Niedźwiedzki

Late Cretaceous (late Turonian)

Opole Basin

Шаблон:Flag

A demosponge belonging to the family Pachastrellidae.

Palaeorossella[26]

Gen. et sp. nov

Valid

Li et al.

Latest Ordovician

Шаблон:Flag

A rossellid hexactinellid sponge. Genus includes new species P. sinensis.

Pellipirania[18]

Gen. et sp. nov

Valid

Botting et al.

Ordovician (Tremadocian)

Fezouata Formation

Шаблон:Flag

A member of Protomonaxonida belonging to the family Piraniidae. The type species is P. gloria.

Pirania? ericia[18]

Sp. nov

Valid

Botting et al.

Ordovician (Tremadocian)

Dol-Cyn-Afon Formation

Шаблон:Flag

A member of Protomonaxonida belonging to the family Piraniidae.

Pirania? peregrinata[18]

Sp. nov

Valid

Botting et al.

Ordovician (Floian)

Ningkuo Formation

Шаблон:Flag

A member of Protomonaxonida belonging to the family Piraniidae.

Pseudoleptomitus[27]

Gen. et sp. nov

Valid

Botting et al.

Early Triassic

Шаблон:Flag

A sponge belonging to the group Protomonaxonida and to the family Leptomitidae. Genus includes new species P. advenus.

Rugocoelia loudonensis[17]

Sp. nov

Valid

Carrera & Sumrall

Ordovician

Lenoir Limestone

Шаблон:Flag
(Шаблон:Flag)

A member of the family Anthaspidellidae.

Subsphaerospongia[28]

Gen. et comb. nov

Valid

Bizzarini

Late Triassic

Шаблон:Flag

A sponge; a new genus for "Stellispongia" subsphaerica Dieci, Antonacci & Zardini (1970).

Teganiella finksi[29]

Sp. nov

Valid

Mouro et al.

Carboniferous (Pennsylvanian)

Mecca Quarry Shale

Шаблон:Flag

Vasispongia[30]

Gen. et sp. nov

Valid

Tang & Xiao in Tang et al.

Cambrian Stage 2

Hetang Formation

Шаблон:Flag

A sponge of uncertain phylogenetic placement. The type species is V. sinensis.

Vauxia leioia[31]

Sp. nov

Valid

Luo, Zhao & Zeng

Cambrian Stage 3

Шаблон:Flag

A vauxiid sponge.

Cnidarians

Research

  • A study on the growth characteristics of three species of Ordovician corals belonging to the genus Agetolites from the Xiazhen Formation (China), and on their implications for inferring phylogenetic relationships of this genus, is published by Sun, Elias & Lee (2019).[32]
  • A study on a large colonial rugose coral from the Ordovician Kope Formation (Kentucky, United States) is published by Harris et al. (2019).[33]
  • A study on the morphology, growth characteristics and phylogenetic relationships of the Silurian tabulate coral Halysites catenularius is published by Liang, Elias & Lee (2019).[34]
  • Fossils of tabulate corals without septa, representing the first evidence that unmetamorphosed, slightly indurated Paleozoic sandstones crop out amidst the deposits of the Atlantic Coastal Plain Province of the United States, are reported from South Carolina by Landmeyer et al. (2019).[35] This finding is strongly disputed because all other rocks of Paleozoic age in the study area are greatly metamorphosed, the rocks where the fossils were found are traditionally mapped as the Cretaceous Middendorf Formation, and it is suggested that the fossils in question are the bark of Cretaceous conifers in Cretaceous sandstone, instead of Paleozoic corals in Paleozoic sandstone.[36]
  • A study aiming to determine whether ecological selection based on physiology, behavior, habitat, etc. played a role in the long-term survival of corals during the late Paleocene and early Eocene is published by Weiss & Martindale (2019).[37]
  • Fossils of Acropora prolifera dating back to the Pleistocene are reported by Precht et al. (2019).[38]
  • A study on the distribution of reef corals during the last interglacial is published by Jones et al. (2019), who also evaluate the utility of fossil reef coral data for predictions of impact of future climate changes on reef corals.[39]
  • A study on a problematic fossil specimen from the Devonian Ponta Grossa Formation (Brazil), assigned by different authors to the species Serpulites sica or Euzebiola clarkei, is published by Van Iten et al. (2019), who interpret this fossil as a medusozoan capable of clonal budding, and transfer it to the genus Sphenothallus.[40]
  • The oldest mesophotic coral ecosystems, dating back to middle Silurian, from the Lower Visby Beds on Gotland have been described by Zapalski & Berkowski.[41] These communities, dominated by platy corals give also clues about the onset of coral-algal symbiosis.
  • Mihaljević (2019) describes new fossil coral collections from the Oligocene and Miocene of Sarawak (Malaysia), Negros Island and Cebu (the Philippines).[42]
  • A study on the anatomy, ontogeny and taxonomy of the Norian hydrozoan Heterastridium, based on data from fossil specimens from central Iran and south Turkey, is published by Senowbari-Daryan & Link (2019).[43]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Amygdalophylloides omarai[44]

Sp. nov

Valid

Kora, Herbig & El Desouky

Carboniferous (Moscovian)

Rod El Hamal Formation

Шаблон:Flag

A rugose coral.

Antillia coatesi[45]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Miocene–late Pliocene

Bowden Formation
Gurabo Formation
Mao Formation
Old Bank Formation

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag

A coral belonging to the subfamily Mussinae.

Aulopora chiharai[46]

Sp. nov

Valid

Niko, Ibaraki & Tazawa

Devonian

Шаблон:Flag

Bothrophyllum cylindricum[44]

Sp. nov

Valid

Kora, Herbig & El Desouky

Carboniferous (Moscovian)

Rod El Hamal Formation

Шаблон:Flag

A rugose coral.

Bothrophyllum suezensis[44]

Sp. nov

Valid

Kora, Herbig & El Desouky

Carboniferous (Moscovian)

Rod El Hamal Formation

Шаблон:Flag

A rugose coral.

Ceratophyllum simplex[47]

Sp. nov

Valid

Liao & Liang

Devonian (Givetian)

Wenglai Formation

Шаблон:Flag

A rugose coral.

Conopora alloporoides[48]

Sp. nov

Valid

Cairns

Miocene (Messinian)

Шаблон:Flag

A member of the family Stylasteridae.

Conopora forticula[48]

Sp. nov

Valid

Cairns

Miocene (Messinian)

Шаблон:Flag

A member of the family Stylasteridae.

Crypthelia ingens[48]

Sp. nov

Valid

Cairns

Miocene (Messinian)

Шаблон:Flag

A member of the family Stylasteridae.

Crypthelia zibrowii[48]

Sp. nov

Valid

Cairns

Miocene (Messinian)

Шаблон:Flag

A member of the family Stylasteridae.

Cyathophyllum wenglaiense[47]

Sp. nov

Valid

Liao & Liang

Devonian (Givetian)

Wenglai Formation

Шаблон:Flag

A rugose coral.

Cystiphylloides marennense[49]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

Mont d'Haurs Formation

Шаблон:Flag

A rugose coral belonging to the family Cystiphyllidae. Originally described as a species of Cystiphylloides, but subsequently made the type species of the separate genus Marennophyllum.[50]

Devonodiscus[51]

Gen. et 2 sp. et comb. nov

Valid

Pedder

Devonian

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag?
Шаблон:Flag?
Шаблон:Flag?
Шаблон:Flag?

A coral. The type species is D. latisubex; genus also includes new species D. pedderi,[52] "Combophyllum" multiradiatum Meek (1868), "Glossophyllum" discoideum Soshkina (1936) and possibly also "Hadrophyllum" wellingtonense Packham (1954) and "Glossophyllum" clebroseptatum Kravtsov (1975).

Dirimia[53]

Gen. et 6 sp. nov

Valid

Fedorowski & Ohar

Carboniferous (Bashkirian)

Шаблон:Flag

A rugose coral belonging to the family Kumpanophyllidae. The type species is D. multiplexa; genus also includes D. similis, D. recessia, D. composita, D. extrema and D. nana.

Distichopora patula[48]

Sp. nov

Valid

Cairns

Miocene (Messinian)

Шаблон:Flag

A member of the family Stylasteridae.

Gyanyimaphyllum[54]

Gen. et sp. nov

Valid

Wang et al.

Permian (Changhsingian)

Шаблон:Flag

A rugose coral. Genus includes new species G. crassiseptatum.

Heritschioides simplex[55]

Sp. nov

Valid

Fedorowski, Bamber & Richards

Carboniferous (Bashkirian)

Mattson Formation

Шаблон:Flag
(Шаблон:Flag)

A rugose coral belonging to the group Stauriida and the family Aulophyllidae.

Hispaniastraea ousriorum[56]

Sp. nov

Valid

Boivin, Vasseur & Lathuilière in Boivin et al.

Early Jurassic (Pliensbachian)

Шаблон:Flag

An anthozoan, possibly a member of Hexanthiniaria.

Ipciphyllum floricolumellum[54]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

Шаблон:Flag

A rugose coral.

Ipciphyllum naoticum[54]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

Шаблон:Flag

A rugose coral.

Ipciphyllum zandaense[54]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

Шаблон:Flag

A rugose coral.

Isophyllia jacksoni[45]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Miocene–early Pleistocene

Cercado Formation
Gurabo Formation
Los Haitises Formation
Mao Formation
Seroe Domi Formation

Шаблон:Flag
Шаблон:Flag

A species of Isophyllia.

Isophyllia maoensis[45]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Miocene–early Pleistocene

Cercado Formation
Gurabo Formation
Isla Colón Formation
Mao Formation

Шаблон:Flag
Шаблон:Flag

A species of Isophyllia.

Kumpanophyllum columellatum[57]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

Шаблон:Flag

A rugose coral belonging to the family Kumpanophyllidae.

Kumpanophyllum decessum[57]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

Шаблон:Flag

A rugose coral belonging to the family Kumpanophyllidae.

Kumpanophyllum levis[57]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

Шаблон:Flag

A rugose coral belonging to the family Kumpanophyllidae.

Kumpanophyllum praecox[57]

Sp. nov

Valid

Fedorowski

Carboniferous (Bashkirian)

Шаблон:Flag

A rugose coral belonging to the family Kumpanophyllidae.

Lepidopora fistulosa[48]

Sp. nov

Valid

Cairns

Miocene (Messinian)

Шаблон:Flag

A member of the family Stylasteridae.

Nemistium liardense[55]

Sp. nov

Valid

Fedorowski, Bamber & Richards

Carboniferous (Bashkirian)

Mattson Formation

Шаблон:Flag
(Шаблон:Flag)

A rugose coral belonging to the group Stauriida and the family Lithostrotionidae.

Neorylstonia[58]

Nom. nov

Valid

Vasseur et al.

Early Jurassic (Sinemurian to Pliensbachian)

Шаблон:Flag

A stony coral belonging to the group Caryophylliina and the superfamily Volzeioidea; a replacement name for Mesophyllum Beauvais (1986).

Octapyrgites[59]

Gen. et sp. nov

Valid

Guo et al.

Cambrian Stage 2

Yanjiahe Formation

Шаблон:Flag

An olivooid medusozoan. Genus includes new species O. elongatus.

Paraconularia kikapu[60]

Sp. nov

Valid

Quiroz-Barroso, Sour-Tovar & Quiroz-Barragán

Permian

Las Delicias Formation

Шаблон:Flag

A member of Conulariida.

Paraconularia kingii[60]

Sp. nov

Valid

Quiroz-Barroso, Sour-Tovar & Quiroz-Barragán

Permian

Las Delicias Formation

Шаблон:Flag

A member of Conulariida.

Pliobothrus nielseni[48]

Sp. nov

Valid

Cairns

Miocene (Messinian)

Шаблон:Flag

A member of the family Stylasteridae.

Pliobothrus striatus[48]

Sp. nov

Valid

Cairns

Miocene (Messinian)

Шаблон:Flag

A member of the family Stylasteridae.

Procteria (Granulidictyum) alechinskyi[52]

Sp. nov

In press

Plusquellec

Devonian (Emsian)

Floresta Formation

Шаблон:Flag

A tabulate coral belonging to the group Favositida and the family Micheliniidae.

Scolymia meederi[45]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Pliocene

Tamiami Formation

Шаблон:Flag

A species of Scolymia.

Scolymia tamiamiensis[45]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Pliocene

Tamiami Formation

Шаблон:Flag

A species of Scolymia.

Septuconularia[61]

Gen. et sp. nov

Valid

Guo et al.

Cambrian Stage 2

Yanjiahe Formation

Шаблон:Flag

A hexangulaconulariid. Genus includes new species S. yanjiaheensis.

Sinkiangopora kawanoi[62]

Sp. nov

Valid

Niko & Fujikawa

Permian

Zomeki Limestone

Шаблон:Flag

A tabulate coral.

Stephanocoenia annae[63]

Sp. nov

Valid

Löser

Early Cretaceous (Albian)

Шаблон:Flag
Шаблон:Flag

A stony coral belonging to the group Astrocoeniina.

Stylaster digitiformis[48]

Sp. nov

Valid

Cairns

Miocene (Messinian)

Шаблон:Flag

A species of Stylaster.

Stylaster multicavus[48]

Sp. nov

Valid

Cairns

Miocene (Messinian)

Шаблон:Flag

A species of Stylaster.

Stylaster tuberosus[48]

Sp. nov

Valid

Cairns

Miocene (Messinian)

Шаблон:Flag

A species of Stylaster.

Thamnophyllum godefroidi[49]

Sp. nov

Valid

Coen-Aubert

Devonian (Givetian)

Mont d'Haurs Formation

Шаблон:Flag

A rugose coral belonging to the family Phillipsastreidae.

Thamnopora sumitaensis[64]

Sp. nov

Valid

Niko

Middle Devonian

Kamiarisu Formation

Шаблон:Flag

A tabulate coral belonging to the order Favositida and the family Pachyporidae.

Trachyphyllia mcneilli[45]

Sp. nov

Valid

Budd & Klaus in Budd et al.

Late Miocene–late Pliocene

Cercado Formation
Gurabo Formation
Mao Formation
Old Bank Formation
Seroe Domi Formation

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag

A relative of the open brain coral.

Waagenophyllum clisicolumellum[54]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

Шаблон:Flag

A rugose coral.

Waagenophyllum gyanyimaense[54]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

Шаблон:Flag

A rugose coral.

Waagenophyllum intermedium[54]

Sp. nov

Valid

Wang et al.

Permian (Changhsingian)

Шаблон:Flag

A rugose coral.

Arthropods

Шаблон:Main

Bryozoans

Name Novelty Status Authors Age Type locality Country Notes Images

Adeonellopsis keralaensis[65]

Sp. nov

Valid

Sonar & Badve

Miocene (Burdigalian)

Quilon Beds

Шаблон:Flag

A cheilostome bryozoan.

Aluis[66]

Gen. et sp. nov

Valid

López-Gappa & Pérez

Miocene (Burdigalian)

Chenque Formation
Monte León Formation
Puesto del Museo Formation

Шаблон:Flag

A cheilostome bryozoan belonging to the family Chaperiidae. Genus includes new species A. spinettai.

Atlantisina mylaensis[67]

Sp. nov

Valid

Rosso & Sciuto

Early Pleistocene (Gelasian)

Шаблон:Flag

Ceriocava scholzi[68]

Sp. nov

Valid

Martha et al.

Late Cretaceous (Santonian)

Шаблон:Flag

A putative cerioporine cyclostome.

Characodoma multiavicularia[69]

Sp. nov

Valid

Di Martino & Taylor in Di Martino et al.

Miocene

Шаблон:Flag

A species of Characodoma.

Charixa bispinata[70]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

Шаблон:Flag

A member of Cheilostomata.

Charixa emanuelae[70]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

Шаблон:Flag

A member of Cheilostomata.

Charixa sexspinata[70]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

Шаблон:Flag

A member of Cheilostomata.

Devonavictoria[71]

Nom. nov

Valid

Hernández

Devonian

Шаблон:Flag

A rhabdomesid bryozoan; a replacement name for Salairella Mesentseva (2015).

Evactinopora mangeri[72]

Sp. nov

Valid

Yancey et al.

Carboniferous (Mississippian)

North America

A member of Cystoporata.

Gigantopora vartonensis[73]

Sp. nov

Valid

Pedramara et al.

Miocene

Qom Formation

Шаблон:Flag

Homotrypa niagarensis[74]

Sp. nov

Valid

Ernst, Brett & Wilson

Silurian (Aeronian)

Reynales Formation

Шаблон:Flag

A trepostome bryozoan.

Hyporosopora keera[75]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

Шаблон:Flag

A member of Cyclostomatida.

Iyarispora[70]

Gen. et 2 sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

Шаблон:Flag

A member of Cheilostomata. Genus includes new species I. ikaanakiteeh and I. chiass.

Lacrimula patriciae[69]

Sp. nov

Valid

Di Martino & Taylor in Di Martino et al.

Miocene

Шаблон:Flag

An ascophoran-grade cheilostome.

Leioclema adsuetum[74]

Sp. nov

Valid

Ernst, Brett & Wilson

Silurian (Aeronian)

Reynales Formation

Шаблон:Flag

A trepostome bryozoan.

Leptotrypa lipovkiensis[76]

Sp. nov

Valid

Tolokonnikova & Pakhnevich

Devonian (Famennian)

Zadonsk Formation

Шаблон:Flag

A trepostome bryozoan.

Mesonopora bernardwalteri[75]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

Шаблон:Flag

A member of Cyclostomatida.

Micropora stellata[77]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

Шаблон:Flag

A species of Micropora.

Microporella sarasotaensis[77]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

Шаблон:Flag

A member of Ascophora belonging to the family Microporellidae.

Microporella tamiamiensis[77]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

Шаблон:Flag

A member of Ascophora belonging to the family Microporellidae.

Moyerella parva[74]

Sp. nov

Valid

Ernst, Brett & Wilson

Silurian (Aeronian)

Reynales Formation

Шаблон:Flag

A rhabdomesine cryptostome bryozoan.

Oncousoecia khirar[75]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

Шаблон:Flag

A member of Cyclostomatida.

Pinegopora chilensis[78]

Sp. nov

Valid

Carrera et al.

Permian

Cerro El Árbol Formation

Шаблон:Flag

A member of Cryptostomata belonging to the group Rhabdomesina and to the family Nikiforovellidae.

Pourtalesella chiarae[77]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

Шаблон:Flag

A member of Ascophora belonging to the family Celleporidae.

Pseudidmonea debodeae[79]

Sp. nov

Valid

Di Martino & Taylor

Early Miocene

Forest Hill Limestone

Шаблон:Flag

A pseudidmoneid cyclostome.

Pseudidmonea oretiensis[79]

Sp. nov

Valid

Di Martino & Taylor

Early Miocene

Forest Hill Limestone

Шаблон:Flag

A pseudidmoneid cyclostome.

Pseudobathystomella mira[80]

Sp. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (late Maastrichtian)

Шаблон:Flag

A cheilostome bryozoan belonging to the superfamily Lepralielloidea.

Ptilotrypa bajpaii[81]

Sp. nov

Valid

Swami et al.

Ordovician (Katian)

Yong Limestone

Шаблон:Flag

A member of Cryptostomata.

Reptomultisparsa mclemoreae[75]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

Шаблон:Flag

A member of Cyclostomatida.

Rhammatopora glenrosa[70]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

Шаблон:Flag

A member of Cheilostomata.

Simplicidium jontoddi[70]

Sp. nov

Valid

Martha, Taylor & Rader

Early Cretaceous (Albian)

Шаблон:Flag

A member of Ctenostomatida.

Skylonia malabarica[65]

Sp. nov

Valid

Sonar & Badve

Miocene (Burdigalian)

Quilon Beds

Шаблон:Flag

A cheilostome bryozoan.

Spiniflabellum laurae[77]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

Шаблон:Flag

A member of Ascophora belonging to the family Cribrilinidae.

Stenosipora? cribrata[69]

Sp. nov

Valid

Di Martino & Taylor in Di Martino et al.

Miocene

Шаблон:Flag

An ascophoran-grade cheilostome.

Stylopoma warkhalensis[65]

Sp. nov

Valid

Sonar & Badve

Miocene (Burdigalian)

Quilon Beds

Шаблон:Flag

A cheilostome bryozoan.

Tobolocella[82]

Gen. et sp. nov

Valid

Koromyslova, Pakhnevich & Fedorov

Late Cretaceous (Maastrichtian)

Шаблон:Flag

A cheilostome bryozoan. Genus includes new species T. levinae.

Trypostega composita[77]

Sp. nov

Valid

Di Martino, Taylor & Portell

Pliocene (Piacenzian)

Tamiami Formation

Шаблон:Flag

A member of Ascophora belonging to the family Trypostegidae.

Uzbekipora[80]

Gen. et comb. nov

Valid

Koromyslova, Martha & Pakhnevich

Late Cretaceous (late Campanian)

Шаблон:Flag

A cheilostome bryozoan belonging to the superfamily Lepralielloidea. The type species is "Porina" anplievae Favorskaya (1992).

Vincularia taylori[65]

Sp. nov

Valid

Sonar & Badve

Miocene (Burdigalian)

Quilon Beds

Шаблон:Flag

A cheilostome bryozoan.

Brachiopods

Шаблон:Main

Molluscs

Шаблон:Main

Echinoderms

Research

  • A study on the morphology and phylogenetic relationships of the putative stem-echinoderm Yanjiahella biscarpa is published by Topper et al. (2019);[83] the study is subsequently criticized by Zamora et al. (2020).[84][85]
  • Soft tissue traces found in conjunction with skeletal molds are described in stylophorans by Lefebvre et al. (2019), who interpret their findings as supporting echinoderm and not hemichordate-like affinities of stylophorans.[86]
  • A study on the morphology and phylogenetic relationships of the lepidocystoid echinoderm Vyscystis is published by Nohejlová et al. (2019).[87]
  • A study on the phylogenetic relationships of diploporitan blastozoans is published by Sheffield & Sumrall (2019).[88]
  • A study on the morphology of the feeding ambulacral system in the Ordovician diploporitan Eumorphocystis, as indicated by data from well-preserved specimens from the Bromide Formation (Oklahoma, United States), is published by Sheffield & Sumrall (2019), who interpret their findings as indicating that Eumorphocystis was closely related to crinoids and that crinoids are nested within blastozoans;[89] their conclusions about the relationship between Eumorphocystis and crinoids are subsequently contested by Guensburg et al. (2020).[90]
  • A study on the morphology and phylogenetic relationships of Macurdablastus uniplicatus is published by Bauer, Waters & Sumrall (2019).[91]
  • A study on the morphology and phylogenetic relationships of Hexedriocystis is published online by Zamora & Sumrall (2019), who consider this taxon to be a blastozoan.[92]
  • A study on the paleoecology of the specimens of the edrioasteroid Neoisorophusella lanei preserved in limestone slabs from the Carboniferous (Chesterian) Kinkaid Formation (Illinois, United States) is published by Shroat-Lewis, Greenwood & Sumrall (2019).[93]
  • A study on the morphology of Cupulocrinus and on its implications for inferring the origin of the flexible crinoids is published by Peter (2019).[94]
  • A study on the phylogenetic relationships of diplobathrid crinoids is published by Cole (2019).[95]
  • A study on the biological and ecological controls on duration of diplobathrid crinoid genera is published online by Cole (2019).[96]
  • A study on the macro-evolutionary patterns of body-size trends of cyrtocrinid crinoids is published by Brom (2019).[97]
  • A study on patterns of paleocommunity structure and niche partitioning in crinoids from the Ordovician (Katian) Brechin Lagerstätte (Ontario, Canada) is published by Cole, Wright & Ausich (2019).[98]
  • A study on the anatomy of the nervous and circulatory systems of the Cretaceous crinoid Decameros ricordeanus and on the phylogenetic relationships of this species is published online by Saulsbury & Zamora (2019).[99]
  • A study on the substrate preference in stem group sea urchins during the Carboniferous Period will be published by Thompson & Bottjer (2019).[100]
  • A study on Early Triassic recovery of sea urchins after the Permian–Triassic extinction event is published by Pietsch et al. (2019).[101]
  • A fossil brittle star belonging to the genus Ophiopetra, representing the first record of articulated brittle star from the Mesozoic of South America reported so far, is described from the Lower Cretaceous Agua de la Mula Member of the Agrio Formation (Argentina) by Fernández et al. (2019), who transfer the genus Ophiopetra to the family Ophionereididae within the order Amphilepidida.[102]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Acanthocrinus carsli[103]

Sp. nov

Valid

Ausich & Zamora

Devonian (Emsian)

Mariposas Formation

Шаблон:Flag

A camerate crinoid.

Applinocrinus striatus[104]

Sp. nov

Valid

Gale

Late Cretaceous

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Archaeocidaris ivanovi[105]

Sp. nov

Valid

Thompson & Mirantsev in Thompson et al.

Carboniferous

Шаблон:Flag

A sea urchin.

Astrosombra[106]

Gen. et sp. nov

Valid

Thuy, Gale & Numberger-Thuy

Late Cretaceous (Maastrichtian)

Шаблон:Flag

A brittle star belonging to the family Amphilimnidae. The type species is A. rammsteinensis.

Athenacrinus[107]

Gen. et sp. nov

Valid

Guensburg et al.

Ordovician

Fillmore Formation

Шаблон:Flag
(Шаблон:Flag)

A crinoid belonging to the group Disparida. The type species is A. broweri.

Becsciecrinus groulxi[108]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

Шаблон:Flag

A crinoid.

Binocalix[109]

Gen. et sp. nov

Valid

McDermott & Paul

Late Ordovician

Шаблон:Flag

An aristocystitid diploporite. Genus includes new species B. dichotomus.

Bucucrinus isotaloi[108]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

Шаблон:Flag

A crinoid.

Carstenicrinus[110]

Gen. et comb. nov

Valid

Roux, Eléaume & Améziane

Late Cretaceous (Campanian and Maastrichtian) and Paleocene (Danian)

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag

A crinoid. The type species is "Apiocrinus" constrictus von Hagenow in Quenstedt (1876); genus also includes "Bourgueticrinus" baculatus Klikushin (1982) and "Bourgueticrinus" danicus Brünnich Nielsen (1913).

Caveacrinus[104]

Gen. et 2 sp. nov

Valid

Gale

Late Cretaceous (Turonian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae. The type species is C. asymmetricus; genus also includes C. serratus.

Cholaster whitei[111]

Sp. nov

Valid

Blake & Nestell

Carboniferous (Chesterian)

Bangor Limestone

Шаблон:Flag

A brittle star.

Conocrinus cahuzaci[110]

Sp. nov

Valid

Roux, Eléaume & Améziane

Eocene (Bartonian)

Шаблон:Flag

A crinoid.

Costatocrinus elegans[104]

Sp. nov

Valid

Gale

Late Cretaceous

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Costatocrinus erismus[104]

Sp. nov

Valid

Gale

Late Cretaceous

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Costatocrinus rostratus[104]

Sp. nov

Valid

Gale

Late Cretaceous (Santonian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Crassicoma cretacea[104]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Crassicoma veulesensis[104]

Sp. nov

Valid

Gale

Late Cretaceous (Santonian)

Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Culicocrinus breimeri[103]

Sp. nov

Valid

Ausich & Zamora

Devonian (Emsian)

Mariposas Formation

Шаблон:Flag

A camerate crinoid.

Dendrocrinus simcoensis[112]

Sp. nov

Valid

Wright, Cole & Ausich

Ordovician (Katian)

Brechin Lagerstätte

Шаблон:Flag
(Шаблон:Flag)

A crinoid belonging to the group Cladida.

Dentatocrinus[104]

Gen. et 4 sp. nov

Valid

Gale

Late Cretaceous (Turonian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae. The type species is D. dentatus; genus also includes D. minutus, D. compactus and D. hoyezi.

Drepanocrinus marocensis[104]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Drepanocrinus striatulus[104]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Echinolampas veracruzensis[113]

Sp. nov

Valid

Buitrón-Sánchez et al.

Oligocene

Coatzintla formation

Шаблон:Flag

A sea urchin belonging to the family Echinolampadidae.

Echinosphaerites dianae[114]

Sp. nov

In press

Zamora et al.

Late Ordovician

Шаблон:Flag

A rhombiferan blastozoan. Announced in 2019; the final version of the article naming it is not published yet.

Eotiaris teseroensis[115]

Sp. nov

Valid

Thompson et al.

Permian-Triassic boundary (latest Changhsingian–early Induan)

Werfen Formation

Шаблон:Flag

A sea urchin belonging to the group Cidaroida and to the family Miocidaridae.

Euglyphocrinus[104]

Gen. et comb. nov

Valid

Gale

Cretaceous (Albian and Cenomanian)

Шаблон:Flag
Шаблон:Flag
(Шаблон:Flag)

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae. The type species is "Roveacrinus" euglypheus Peck (1943); genus also includes "R." pyramidalis Peck (1943).

Euspirocrinus hintsae[116]

Sp. nov

Valid

Ausich, Wilson & Toom

Silurian (Rhuddanian)

Шаблон:Flag

A eucladid crinoid.

Falloaster[117]

Gen. et sp. nov

Valid

Blake, Gahn & Guensburg

Ordovician (Floian)

Garden City Formation

Шаблон:Flag
(Шаблон:Flag)

A member of Asterozoa of uncertain phylogenetic placement. Genus includes new species F. anquiroisitus.

Gamiroaster[118]

Gen. et sp. nov

Valid

Reid et al.

Early Devonian

Voorstehoek Formation

Шаблон:Flag

A brittle star belonging to the family Protasteridae. The type species is G. tempestatis.

Heloambocolumnus[119]

Gen. et sp. nov

Valid

Donovan & Doyle

Carboniferous (Bashkirian)

Clare Shale Formation

Шаблон:Flag

A crinoid. Genus includes new species Heloambocolumnus (col.) harperi.

Hessicrinus primus[104]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Hessicrinus robustus[104]

Sp. nov

Valid

Gale

Late Cretaceous (Coniacan)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Hessicrinus thoracifer[104]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian and Coniacan)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Homocystites adidiensis[114]

Sp. nov

In press

Zamora et al.

Late Ordovician

Шаблон:Flag

A rhombiferan blastozoan. Announced in 2019; the final version of the article naming it is not published yet.

Hyattechinus anglicus[120]

Sp. nov

Valid

Thompson & Ewin

Devonian (Famennian)

Pilton Mudstone Formation

Шаблон:Flag

A sea urchin.

Jovacrinus clarki[108]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

Шаблон:Flag

A crinoid.

Kalanacrinus[121]

Gen. et sp. nov

Valid

Ausich, Wilson & Tinn

Silurian (Aeronian)

Шаблон:Flag

A camerate crinoid. Genus includes new species K. mastikae.

Konieckicrinus[112]

Gen. et 2 sp. nov

Valid

Wright, Cole & Ausich

Ordovician (Katian)

Brechin Lagerstätte

Шаблон:Flag
(Шаблон:Flag)

A crinoid belonging to the group Cladida. Genus includes new species K. brechinensis and K. josephi.

Lateranicrinus[108]

Gen. et sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

Шаблон:Flag

A crinoid. Genus includes new species L. saintlaurenti.

Lebenharticrinus[122]

Gen. et 3 sp. nov

Valid

Žítt et al.

Late Cretaceous (Cenomanian to Santonian)[104]

Bohemian-Saxonian Cretaceous Basin

Шаблон:Flag
Шаблон:Flag[123]
Шаблон:Flag
Шаблон:Flag[123]
Шаблон:Flag[123]
Шаблон:Flag[123]

A crinoid belonging to the group Roveacrinida. Genus includes new species L. canaliculatus, L. incisurus and L. ultimus.[104]

Lucernacrinus oculus[104]

Sp. nov

Valid

Gale

Late Cretaceous (Santonian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Magnofossacrinus[124]

Gen. et sp. nov

Valid

Mirantsev

Carboniferous (Moscovian)

Шаблон:Flag

A crinoid belonging to the family Poteriocrinidae. Genus includes new species M. domodedovoensis.

Monostychia glenelgensis[125]

Sp. nov

Valid

Sadler, Holmes & Gallagher

Miocene

Шаблон:Flag

A sand dollar.

Monostychia merrimanensis[125]

Sp. nov

Valid

Sadler, Holmes & Gallagher

Miocene

Шаблон:Flag

A sand dollar.

Multisievertsia[126]

Gen. et sp. nov

Valid

Müller & Hahn

Early Devonian

Шаблон:Flag

A member of Echinozoa belonging to the group Cyclocystoidea. The type species is M. eichelei.

Oepikicrinus[116]

Gen. et sp. nov

Valid

Ausich, Wilson & Toom

Silurian (Aeronian)

Шаблон:Flag

A camerate crinoid. Genus includes new species O. perensae.

Orthogonocrinus cantabrigensis[104]

Sp. nov

Valid

Gale

Late Cretaceous (Cenomanian)

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Paraconocrinus[110]

Gen. et comb. et sp. nov

Valid

Roux, Eléaume & Améziane

Eocene

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag

A crinoid. The type species is "Eugeniacrinus" pyriformis Münster in Goldfuss (1826); genus also includes "Conocrinus" cazioti Valette (1924), "Conocrinus" handiaensis Roux (1978) and "Conocrinus" romanensis Roux & Plaziat (1978), as well as a new species P. pellati.

Perforocycloides[127]

Gen. et sp. nov

Valid

Ewin et al.

Silurian (Telychian)

Jupiter Formation

Шаблон:Flag
(Шаблон:Flag)

A member of Echinozoa belonging to the group Cyclocystoidea. The type species is P. nathalieae.

Platyhexacrinus santacruzensis[103]

Sp. nov

Valid

Ausich & Zamora

Devonian (Emsian)

Mariposas Formation

Шаблон:Flag

A camerate crinoid.

Plicodendrocrinus martini[108]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

Шаблон:Flag

A crinoid.

Plicodendrocrinus petryki[108]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

Шаблон:Flag

A crinoid.

Pliotoxaster buitronae[128]

Sp. nov

Valid

Forner

Early Cretaceous (Aptian)

Margas del Forcall Formation

Шаблон:Flag

A sea urchin belonging to the family Toxasteridae.

Pseudoconocrinus[110]

Gen. et comb. nov

Valid

Roux, Eléaume & Améziane

Paleocene and Eocene

Crimean Peninsula
Шаблон:Flag
Шаблон:Flag

A crinoid. The type species is "Conocrinus" doncieuxi Roux (1978); genus also includes "Democrinus" maximus Brünnich Nielsen (1915) and "Conocrinus" tauricus Klikushin (1982).

Rhenopyrgus viviani[129]

Sp. nov

Valid

Ewin et al.

Silurian (Telychian)

Jupiter Formation

Шаблон:Flag
(Шаблон:Flag)

A member of Edrioasteroidea.

Roveacrinus bifidus[104]

Sp. nov

Valid

Gale

Late Cretaceous (Cenomanian)

Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Roveacrinus falcifer[104]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Roveacrinus ferrei[104]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Roveacrinus labyrinthus[104]

Sp. nov

Valid

Gale

Late Cretaceous (Turonian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Rozhnovicrinus[116]

Gen. et sp. nov

Valid

Ausich, Wilson & Toom

Silurian (Aeronian)

Шаблон:Flag

A eucladid crinoid. Genus includes new species R. isakarae.

Sagittacrinus transiens[104]

Sp. nov

Valid

Gale

Late Cretaceous

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Sagittacrinus tricostatus[104]

Sp. nov

Valid

Gale

Late Cretaceous (Santonian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Saccocomidae.

Shoshonura[130]

Gen. et sp. nov

Valid

Thuy et al.

Early Triassic

Шаблон:Flag

A brittle star. Genus includes new species S. brayardi.

Simcoecrinus[112]

Gen. et sp. nov

Valid

Wright, Cole & Ausich

Ordovician (Katian)

Brechin Lagerstätte

Шаблон:Flag
(Шаблон:Flag)

A crinoid belonging to the group Cladida. Genus includes new species S. mahalaki.

Sollasina cthulhu[131]

Sp. nov

Valid

Rahman et al.

Silurian (Wenlock)

Coalbrookdale Formation

Шаблон:Flag

A member of Ophiocistioidea belonging to the family Sollasinidae.

Stellacrinus angelicus[104]

Sp. nov

Valid

Gale

Late Cretaceous (Santonian)

Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Stellacrinus delicatus[104]

Sp. nov

Valid

Gale

Late Cretaceous (Santonian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Stellacrinus stapes[104]

Sp. nov

Valid

Gale

Late Cretaceous (Coniacian)

Шаблон:Flag
Шаблон:Flag

A crinoid belonging to the group Roveacrinida and the family Roveacrinidae.

Tartucrinus[121]

Gen. et sp. nov

Valid

Ausich, Wilson & Tinn

Silurian (Aeronian)

Шаблон:Flag

A disparid crinoid. Genus includes new species T. kalanaensis.

Thalamocrinus daoustae[108]

Sp. nov

Valid

Ausich & Cournoyer

Ordovician-Silurian boundary

Шаблон:Flag

A crinoid.

Totiglobus spencensis[132]

Sp. nov

Valid

Wen et al.

Cambrian (Wuliuan)

Spence Shale

Шаблон:Flag

A member of Edrioasteroidea belonging to the family Totiglobidae.

Conodonts

Research

  • A study on the feeding habits of conodonts, as indicated by data from calcium stable isotopes, is published by Balter et al. (2019).[133]
  • A study on the variation of conodont element crystal structure throughout their evolutionary history is published online by Medici et al. (2019).[134]
  • A study on the evolution of platform-like P1 elements in conodonts, evaluating its possible link to ecology of conodonts, is published by Ginot & Goudemand (2019).[135]
  • A study on the impact of early Paleozoic environmental changes on evolution and paleoecology of conodonts from the Canadian part of Laurentia is published online by Barnes (2019).[136]
  • A study on the morphology, occurrences and biostratigraphical value of Paroistodus horridus is published online by Mestre & Heredia (2019).[137]
  • A revision of the taxonomy and evolutionary relationships of the Late Ordovician genera Tasmanognathus and Yaoxianognathus is published by Yang et al. (2019).[138]
  • A study on the composition and architecture of the apparatus of Erismodus quadridactylus is published by Dhanda et al. (2019).[139]
  • A study on the ontogeny of the Lochkovian conodont species Ancyrodelloides carlsi is published by Corriga & Corradini (2019).[140]
  • A study on fossils of members of the genus Alternognathus from the Upper Devonian of the Kowala quarry (central Poland), attempting to calibrate the course of their ontogeny in days and documenting cyclic mortality events, is published by Świś (2019).[141]
  • The apparatus of Vogelgnathus simplicatus is reconstructed from discrete elements from a sample of limited diversity from the Carboniferous strata from Ireland by Sanz-López, Blanco-Ferrera & Miller (2019).[142]
  • Neospathodid conodont elements with partly preserved basal body (one of two main parts of conodont elements, besides the crown) are reported from the Lower Triassic of Oman by Souquet & Goudemand (2019), who interpret their finding as indicating that the absence of basal bodies in post-Devonian conodonts was due to a preservational bias only.[143]
  • Natural assemblages of conodonts, preserving possible impressions of "eyes", are described from the Lower Triassic pelagic black claystones of the North Kitakami Belt (Japan) by Takahashi, Yamakita & Suzuki (2019).[144]
  • A study on the composition of the apparatus of Nicoraella, based on data from clusters from the Middle Triassic Luoping Biota (Yunnan, China), is published by Huang et al. (2019).[145]
  • The architecture of apparatus of Nicoraella kockeli is reconstructed by Huang et al. (2019), who also evaluate proposed functional interpretations of the conodont feeding apparatus.[146]
  • A study on Middle Triassic conodont assemblages from Jenzig section of the Jena Formation and Troistedt section of the Meissner Formation (Germany) is published by Chen et al. (2019), who also study the morphology of the apparatuses of Neogondolella haslachensis and Nicoraella germanica, and review and revise the species Neogondolella mombergensis.[147]
  • A study evaluating the quantitative morphological variation of P1 conodont elements within and between seven conodont morphospecies from the Pizzo Mondello section (Sicily, Italy) and their evolution within 7 million years around the Carnian/Norian boundary is published by Guenser et al. (2019).[148]
  • A study on the taphonomy of basal tissue of conodont elements is published online by Suttner & Kido (2019).[149]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Gnathodus lanei[150]

Sp. nov

Valid

Lane et al.

Carboniferous

Bird Spring Formation

Шаблон:Flag

Icriodella iberiensis[151]

Sp. nov

Valid

Voldman & Toyos

Ordovician (Katian)

Casaio Formation

Шаблон:Flag

Palmatolepis chaemensis[152]

Sp. nov

Valid

Savage

Late Devonian

Шаблон:Flag

Palmatolepis thamensis[152]

Sp. nov

Valid

Savage

Late Devonian

Шаблон:Flag

Parapetella? guanyinensis[153]

Sp. nov

Valid

Jiang et al.

Late Triassic (Carnian)

Шаблон:Flag

Polygnathus serriformis[154]

Sp. nov

Valid

Plotitsyn & Gatovsky

Devonian (Famennian)

Шаблон:Flag

Polygnathus sharyuensis[155]

Nom. nov

Valid

Ovnatanova et al.

Devonian (Famennian)

Sortomael' Formation

Шаблон:Flag
Шаблон:Flag

A replacement name Polygnathus mawsonae Ovnatanova et al. (2017).

Polygnathus tenellus surinensis[152]

Subsp. nov

Valid

Savage

Late Devonian

Шаблон:Flag

Polygnathus tsygankoi[154]

Sp. nov

Valid

Plotitsyn & Gatovsky

Devonian (Famennian)

Шаблон:Flag

Protophragmodus[156]

Gen. et comb. nov

Valid

Zhen

Ordovician (Darriwilian and Sandbian)

Canning Basin
Glenwood Beds

Шаблон:Flag
Шаблон:Flag

A new genus for "Phragmodus" polystrophos Watson, "Phragmodus" spicatus Watson and "Phragmodus" cognitus Stauffer.

Zieglerodina schoenlaubi[157]

Sp. nov

Valid

Corradini et al.

Devonian (Lochkovian)

Шаблон:Flag

Fishes

Шаблон:Main

Amphibians

Шаблон:Main

Reptiles

Шаблон:Main

Synapsids

Non-mammalian synapsids

Research

  • A study on the morphological diversity and morphological changes of the humeri of Paleozoic and Triassic synapsids through time is published by Lungmus & Angielczyk (2019).[158]
  • A study on the diversity of patterns of skull shape (focusing on the relative lengths of the face and braincase regions of the skull) in non-mammalian synapsids is published by Krone, Kammerer & Angielczyk (2019).[159]
  • Two pathologically fused tail vertebrae of a varanopid, likely affected by a metabolic bone disease closely resembling Paget's disease of bone, are described from the early Permian Richards Spur locality (Oklahoma, United States) by Haridy et al. (2019).[160]
  • Description of new skull remains of Echinerpeton intermedium and a study on the phylogenetic relationships of this species is published online by Mann & Paterson (2019).[161]
  • Fossil material of a large carnivorous synapsid belonging to the family Sphenacodontidae is described from the Torre del Porticciolo locality (Italy) by Romano et al. (2019), representing the first carnivorous non-therapsid synapsid from the Permian of Italy reported so far, and one of the few known from Europe.[162]
  • Description of the morphology and histology of a small neural spine from the Early Permian Richards Spur locality (Oklahoma, United States) attributable to Dimetrodon is published by Brink, MacDougall & Reisz (2019), who also report evidence from fossil teeth indicative of presence of a derived species of Dimetrodon (otherwise typical of later, Kungurian localities of Texas and Oklahoma) at the Richards Spur locality.[163]
  • A study on the histology of the skull roof of burnetiamorph biarmosuchians is published by Kulik & Sidor (2019).[164]
  • Femur of a specimen of the titanosuchid species Jonkeria parva affected by osteomyelitis is described from the Permian of Karoo Basin (South Africa) by Shelton, Chinsamy & Rothschild (2019).[165]
  • A study on the adaptations to herbivory in the teeth of members of the family Tapinocephalidae is published by Whitney & Sidor (2019).[166]
  • An almost complete skeleton of Tapinocaninus pamelae, providing new information on the anatomy of the appendicular skeleton of this species (including the first accurate vertebral count for a dinocephalian), is described from the lowermost Beaufort Group of South Africa by Rubidge, Govender & Romano (2019).[167]
  • Romano & Rubidge (2019) present body mass estimates for a well preserved and complete skeleton of Tapinocaninus pamelae from the lowermost Beaufort Group of South Africa.[168]
  • A study on the skull anatomy and phylogenetic relationships of Styracocephalus platyrhynchus is published by Fraser-King et al. (2019).[169]
  • A study on the evolution of the sacral vertebrae of dicynodonts is published by Griffin & Angielczyk (2019).[170]
  • A study on the diversity of dicynodonts from the Upper Permian Naobaogou Formation (China) is published by Liu (2019).[171]
  • A study on skulls of South American dicynodonts, aiming to determine whether the differences in skull morphology were related to differences in feeding function, is published by Ordonez et al. (2019).[172]
  • New fossil material of Endothiodon tolani is described from the Permian K5 Formation of the Metangula Graben (Mozambique) by Macungo et al. (2019).[173]
  • A study on the anatomy of the postcranial skeleton of Endothiodon bathystoma, based on data from a new specimen from the uppermost Pristerognathus Assemblage Zone of the Karoo Supergroup (South Africa), is published online by Maharaj, Chinsamy & Smith (2019).[174]
  • Small dicynodont skull assigned to the genus Digalodon is described from the Lopingian upper Madumabisa Mudstone Formation (Zambia) by Angielczyk (2019), expanding known geographic range of this genus.[175]
  • Digital endocast of Rastodon procurvidens is reconstructed by de Simão-Oliveira, Kerber & Pinheiro (2019), who evaluate biological implications of the endocast morphology of this species.[176]
  • Mancuso & Irmis (2019) describe an ulna of a member of the genus Stahleckeria from the Chañares Formation (Argentina), and evaluate the implications of this finding for the knowledge of the Triassic Gondwanan biostratigraphy and biogeography.[177]
  • A study on the body mass of Lisowicia bojani is published online by Romano & Manucci (2019).[178]
  • A study on fossils of a putative Cretaceous dicynodont from Australia reported by Thulborn & Turner (2003)[179] is published online by Knutsen & Oerlemans (2019), who consider these fossils to be of Pliocene-Pleistocene age, and reinterpret it as fossils of a large mammal, probably a diprotodontid.[180]
  • A study aiming to determine patterns of morphological and phylogenetic diversity of therocephalians throughout their evolutionary history is published by Grunert, Brocklehurst & Fröbisch (2019).[181]
  • A study on variation in rates of body size evolution of therocephalians is published by Brocklehurst (2019).[182]
  • A study on the morphology of the manus of a new therocephalian specimen referable to the genus Tetracynodon from the Early Triassic of South Africa, and on the evolution of the manus morphology of therocephalians, is published by Fontanarrosa et al. (2019).[183]
  • A study on patterns of nonmammalian cynodont species richness and the quality of their fossil record is published by Lukic-Walther et al. (2019).[184]
  • A study on the morphology and bone histology of the postcranial skeleton of Galesaurus planiceps is published by Butler, Abdala & Botha-Brink (2019).[185]
  • Redescription of the anatomy of the skull of Galesaurus planiceps is published by Pusch, Kammerer & Fröbisch (2019).[186]
  • Description of teeth of all known diademodontid and trirachodontid cynodont taxa is published by Hendrickx, Abdala & Choiniere (2019), who also propose a standardized list of anatomical terms and abbreviations in the study of gomphodont teeth, assign Sinognathus and Beishanodon to the family Trirachodontidae, and consider all specimens previously referred to the species Cricodon kannemeyeri to be younger individuals of Trirachodon berryi.[187]
  • A study on the bone histology of the traversodontid cynodonts Protuberum cabralense and Exaeretodon riograndesis is published by Veiga, Botha-Brink & Soares (2019).[188]
  • Hypsodont postcanine teeth of Menadon besairiei are described by Melo et al. (2019), who also study patterns of dental growth and replacement in this species.[189]
  • Digital endocasts of Massetognathus ochagaviae and Probelesodon kitchingi are reconstructed by Hoffmann et al. (2019).[190]
  • A skull of a member of the species Massetognathus ochagaviae is described from the Carnian Santacruzodon Assemblage Zone of the Santa Maria Supersequence (Rio Grande do Sul, Brazil) by Schmitt et al. (2019).[191]
  • Description of brain endocasts of Siriusgnathus niemeyerorum and Exaeretodon riograndensis, using virtual models based on computed tomography scan data, is published by Pavanatto, Kerber & Dias-da-Silva (2019).[192]
  • Description of new fossil material of Siriusgnathus niemeyerorum from the Upper Triassic Caturrita Formation (Brazil) and a study on the age of its fossils is published online by Miron et al. (2019).[193]
  • A study on the evolution of infraorbital maxillary canal in probainognathian cynodonts and on its implications for the knowledge of evolution of mobile whiskers in non-mammalian synapsids, as indicated by data from skulls of non-mammalian probainognathian cynodonts and early mammaliaforms, is published online by Benoit et al. (2019).[194]
  • Digital skull endocast of a specimen of Riograndia guaibensis is reconstructed by Rodrigues et al. (2019).[195]
  • Description of the anatomy of the first postcranial specimens referable to Riograndia guaibensis is published by Guignard, Martinelli & Soares (2019).[196]
  • A study on the anatomy of the postcranial skeleton of Brasilodon quadrangularis is published by Guignard, Martinelli & Soares (2019).[197]
  • A study on tooth wear patterns of members of the family Tritylodontidae and on their possible diet is published by Kalthoff et al. (2019).[198]
  • Possible cynodont teeth, which might be the most recent non-mammaliaform cynodont fossils from Africa reported so far, are described from the Late Jurassic or earliest Cretaceous locality of Ksar Metlili (Anoual Syncline, eastern Morocco) by Lasseron (2019).[199]
  • A study on the origin of the mammalian middle ear ossicles, as indicated by the anatomy of the jaw-otic complex in 43 synapsid taxa, is published by Navarro-Díaz, Esteve-Altava & Rasskin-Gutman (2019).[200]
  • A study on the evolution of the morphological complexity of the mammalian vertebral column, as indicated by data from mammals and non-mammalian synapsids, is published by Jones, Angielczyk & Pierce (2019).[201]

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Arisierpeton[202]

Gen. et sp. nov

Valid

Reisz

Permian (Artinskian)

Шаблон:Flag

A member of the family Caseidae. The type species is A. simplex.

Bohemiclavulus[203]

Gen. et comb. nov

Valid

Spindler, Voigt & Fischer

Carboniferous (Gzhelian)

Slaný Formation

Шаблон:Flag

A member of the family Edaphosauridae; a new genus for "Naosaurus" mirabilis Fritsch (1895). Announced in 2019; the final version of the article naming it was published in 2020.

Cabarzia[204]

Gen. et sp. nov

Valid

Spindler, Werneburg & Schneider

Permian (Asselian or Sakmarian)

Goldlauter Formation

Шаблон:Flag

A member of Varanopidae belonging to the subfamily Mesenosaurinae. The type species is C. trostheidei.

Counillonia[205]

Gen. et sp. nov

Valid

Olivier et al.

Most likely Early Triassic

Luang Prabang Basin
(Purple Claystone Formation)

Шаблон:Flag

A Dicynodon-grade dicynodont. Genus includes new species C. superoculis.

Dendromaia[206]

Gen. et sp. nov

In press

Maddin, Mann & Hebert

Carboniferous

Шаблон:Flag
(Шаблон:Flag)

A member of Varanopidae. Genus includes new species D. unamakiensis. Announced in 2019; the final version of the article naming it is scheduled to be published in 2020.

Dicynodon angielczyki[207]

Sp. nov

Valid

Kammerer

Late Permian

Usili Formation

Шаблон:Flag

Gorynychus sundyrensis[208]

Sp. nov

Valid

Suchkova & Golubev

Middle Permian

Шаблон:Flag

A therocephalian belonging to the family Lycosuchidae.

Hypselohaptodus[209]

Gen. et comb. nov

Valid

Spindler

Permian (Cisuralian)

Шаблон:Flag

An early member of Sphenacodontia; a new genus for "Haptodus" grandis. Announced in 2019; the final version of the article naming it was published in 2020.

Jiufengia[210]

Gen. et sp. nov

Valid

Liu & Abdala

Late Permian

Naobaogou Formation

Шаблон:Flag

A therocephalian belonging to the family Akidnognathidae. The Type species is J. jiai.

Julognathus[211]

Gen. et sp. nov

Valid

Suchkova & Golubev

Middle Permian

Шаблон:Flag

A therocephalian belonging to the family Scylacosauridae. Genus includes new species J. crudelis.

Kembawacela[212]

Gen. et sp. nov

Valid

Angielczyk, Benoit & Rubidge

Late Permian

Madumabisa Mudstone Formation

Шаблон:Flag

A dicynodont belonging to the family Cistecephalidae. Genus includes new species K. kitchingi.

Lisowicia[213]

Gen. et sp. nov

Sulej & Niedźwiedzki

Late Triassic (late Norian-earliest Rhaetian)

Шаблон:Flag

A gigantic dicynodont reaching an estimated body mass of 9 tons. The type species is L. bojani. Announced in 2018; the final version of the article naming it was published in 2019.

Mesenosaurus efremovi[214]

Sp. nov

Valid

Maho, Gee & Reisz

Early Permian

Шаблон:Flag
(Шаблон:Flag)

A member of Varanopidae.

Pseudotherium[215]

Gen. et sp. nov

Valid

Wallace, Martínez & Rowe

Late Triassic (Carnian)

Ischigualasto Formation

Шаблон:Flag

A probainognathian cynodont closely related to tritylodontids. The type species is P. argentinus.

Remigiomontanus[203]

Gen. et sp. nov

Valid

Spindler, Voigt & Fischer

CarboniferousPermian transition

Saar–Nahe Basin

Шаблон:Flag

A member of the family Edaphosauridae. Genus includes new species R. robustus. Announced in 2019; the final version of the article naming it was published in 2020.

Repelinosaurus[205]

Gen. et sp. nov

Valid

Olivier et al.

Most likely Early Triassic

Luang Prabang Basin
(Purple Claystone Formation)

Шаблон:Flag

A kannemeyeriiform dicynodont. Genus includes new species R. robustus.

Thliptosaurus[216]

Gen. et sp. nov

Valid

Kammerer

Late Permian (Changhsingian)

Daptocephalus Assemblage Zone

Шаблон:Flag

A late-surviving small dicynodont of the family Kingoriidae. Genus includes the new species T. imperforatus.

Ufudocyclops[217]

Gen. et sp. nov

Valid

Kammerer et al.

Probably Middle Triassic

Burgersdorp Formation

Шаблон:Flag

A stahleckeriid dicynodont. Genus includes new species U. mukanelai.

Vetusodon[218]

Gen. et sp. nov

Valid

Abdala et al.

Permian (Lopingian)

Karoo Supergroup (Daptocephalus Assemblage Zone)

Шаблон:Flag

A cynodont closely related to the group Eucynodontia. Genus includes the new species V. elikhulu.

Mammals

Шаблон:Main

Other animals

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Adelochaeta[219]

Gen. et sp. nov

Han, Conway Morris & Shu in Han et al.

Cambrian Stage 3

Chiungchussu Formation

Шаблон:Flag

A polychaete. The type species is A. sinensis.

Alfaites[220]

Gen. et sp. nov

Valid

Valent, Fatka & Marek

Cambrian (Drumian)

Buchava Formation

Шаблон:Flag

A member of Hyolitha. The type species is A. romeo.

Alulagraptus[221]

Gen. et comb. nov

Valid

Chen et al.

Late Ordovician

Шаблон:Flag

A graptolite. Genus includes A. ensiformis (Mu & Zhang in Mu et al., 1963).

Anomalocaris magnabasis[222]

Sp. nov

Valid

Pates et al.

Cambrian Stage 4

Carrara Formation
Pioche Formation

Шаблон:Flag

A member of Radiodonta. Originally described as a species of Anomalocaris, but transferred to the genus Houcaris in 2021.[223]

Archiasterella auriculata[224]

Sp. nov

Valid

Moore in Moore et al.

Cambrian

Шаблон:Flag
(Шаблон:Flag)

A chancelloriid sclerite.

Archiasterella cometensis[224]

Sp. nov

Valid

Moore in Moore et al.

Cambrian

Шаблон:Flag
(Шаблон:Flag)

A chancelloriid sclerite.

Archiasterella uncinata[224]

Sp. nov

Valid

Moore in Moore et al.

Cambrian

Шаблон:Flag
(Шаблон:Flag)

A chancelloriid sclerite.

Bauruascaris[225]

Gen. et 2 sp. nov

Valid

Cardia et al.

Late Cretaceous (Campanian/Maastrichtian)

Adamantina Formation

Шаблон:Flag

An ascaridoid nematode described on the basis of fossil eggs preserved in crocodyliform coprolites. Genus includes new species B. cretacicus and B. adamantinensis.

Bicingulites nanningensis[226]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

Шаблон:Flag

A member of Tentaculitida.

Cambrachelous[227]

Gen. et sp. nov

Valid

Geyer, Valent & Meier

Cambrian

Tannenknock Formation

Шаблон:Flag

A member of Hyolitha. Genus includes new species C. diploprosopus.

Cambroraster[228]

Gen. et sp. nov

Valid

Moysiuk & Caron

Cambrian

Burgess Shale

Шаблон:Flag
Шаблон:Flag[229][230]

A radiodont belonging to the family Hurdiidae. Genus includes new species C. falcatus.

Cephalonega[231]

Nom. nov

Valid

Ivantsov et al.

Ediacaran

Шаблон:Flag

A member of Proarticulata; a replacement name for Onega Fedonkin (1976).

Chancelloria australilonga[232]

Sp. nov

Valid

Yun et al.

Cambrian Stage 4

Emu Bay Shale

Шаблон:Flag

Chancelloria impar[224]

Sp. nov

Valid

Moore in Moore et al.

Cambrian

Шаблон:Flag
(Шаблон:Flag)

A chancelloriid sclerite.

Chancelloria lilioides[224]

Sp. nov

Valid

Moore in Moore et al.

Cambrian

Шаблон:Flag
(Шаблон:Flag)

A chancelloriid sclerite.

Cornulites sokiranae[233]

Sp. nov

Valid

Vinn, Musabelliu & Zatoń

Late Devonian

Central Devonian Field

Шаблон:Flag

A member of Cornulitida.

Costatubus[234]

Gen. et sp. nov

Valid

Selly et al.

Ediacaran

Шаблон:Flag

A cloudinid. Genus includes new species C. bibendi.

Costulatotheca[235]

Gen. et sp. nov

Valid

Earp

Early Devonian

Шаблон:Flag

A member of Hyolitha. Genus includes new species C. schleigeri.

Cupitheca decollata[236]

Sp. nov

Valid

Sun et al.

Early Cambrian

Yu'anshan Formation

Шаблон:Flag

A member of Hyolitha.

Dahescolex[237]

Gen. et sp. nov

Valid

Shao et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

Шаблон:Flag

An animal which might be a stem-lineage derivative of Scalidophora. Genus includes new species D. kuanchuanpuensis. Announced in 2019; the final version of the article naming it was published in 2020.

Daihua[238]

Gen. et sp. nov

Valid

Zhao et al.

Cambrian Stage 3

Chiungchussu Formation

Шаблон:Flag

A member of the total group of Ctenophora. The type species is D. sanqiong.

Dailyatia decobruta[239]

Sp. nov

Valid

Betts in Betts et al.

Early Cambrian

Шаблон:Flag

A tommotiid belonging to the family Kennardiidae.

Echinokleptus[240]

Gen. et sp. nov

Valid

Muir et al.

Ordovician (Tremadocian)

Шаблон:Flag

Agglutinated tubes most likely produced by a polychaete. Genus includes new species E. anileis.

Gothograptus auriculatus[241]

Sp. nov

Valid

Kozłowska et al.

Silurian

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag

A graptolite.

Gothograptus diminutus[241]

Sp. nov

Valid

Kozłowska et al.

Silurian

Шаблон:Flag

A graptolite.

Gothograptus domeyki[241]

Sp. nov

Valid

Kozłowska et al.

Silurian

Шаблон:Flag

A graptolite.

Gothograptus velo[241]

Sp. nov

Valid

Kozłowska et al.

Silurian

Шаблон:Flag

A graptolite.

Grantitheca? klani[227]

Sp. nov

Valid

Geyer, Valent & Meier

Cambrian

Tannenknock Formation

Шаблон:Flag

A member of Hyolitha.

Harrisgraptus[242]

Gen. et comb. nov

Valid

VandenBerg

Ordovician (Floian)

Шаблон:Flag

A graptolite belonging to the group Dichograptina and the family Pterograptidae. The type species is "Didymograptus" eocaduceus Harris (1933).

Hexitheca washingtonensis[243]

Sp. nov

Valid

Malinky & Geyer

Early Cambrian (Dyeran)

Шаблон:Flag

A member of Hyolitha.

Heydenius simulphilus[244]

Sp. nov

Valid

Poinar & Currie

Eocene

Baltic amber

Europe (Baltic Sea region)

A nematode belonging to the family Mermithidae. Announced in 2019; the final version of the article naming was published in 2020.

Ipoliknus[219]

Gen. et sp. nov

Han, Conway Morris & Shu in Han et al.

Cambrian Stage 3

Chiungchussu Formation

Шаблон:Flag

A polychaete. The type species is I. avitus.

Lonchidium cylicus[226]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

Шаблон:Flag

A member of Tentaculitida.

Nectocotis[245]

Gen. et sp. nov

Valid

Smith

Ordovician (Katian)

Whetstone Gulf Formation

Шаблон:Flag
(Шаблон:Flag)

A relative of Nectocaris; an animal of uncertain phylogenetic placement, possibly a stem-cephalopod. The type species is N. rusmithi.

Normalograptus baridaensis[246]

Sp. nov

Valid

Štorch, Roqué Bernal & Gutiérrez-Marco

Ordovician (Hirnantian)

Шаблон:Flag

A graptolite.

Normalograptus ednae[246]

Sp. nov

Valid

Štorch, Roqué Bernal & Gutiérrez-Marco

Silurian (Rhuddanian)

Шаблон:Flag

A graptolite.

Odessites aurisites[226]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

Шаблон:Flag

A member of Tentaculitida.

Odessites nahongensis[226]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

Шаблон:Flag

A member of Tentaculitida.

Paratriplicatella[247]

Gen. et sp. nov

Valid

Pan et al.

Early Cambrian

Шаблон:Flag

A member of Hyolitha. Genus includes new species P. shangwanensis.

Protomicrocornus[247]

Gen. et sp. nov

Valid

Pan et al.

Early Cambrian

Шаблон:Flag

A member of Hyolitha. Genus includes new species P. triplicensis.

Saarina hagadorni[234]

Sp. nov

Valid

Selly et al.

Ediacaran

Шаблон:Flag

Shenzianyuloma[248]

Gen. et sp. nov

Valid

McMenamin

Cambrian

Maotianshan Shales

Шаблон:Flag

A member of Vetulicolia. The type species is S. yunnanense.

Sialomorpha[249]

Gen. et sp. nov

Valid

Poinar & Nelson

Eocene or Miocene

Dominican amber

Шаблон:Flag

A small invertebrate of uncertain phylogenetic placement, sharing characters with both tardigrades and mites, but belonging to neither group. The type species is S. dominicana.

Tentaculites brevitenui[226]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

Шаблон:Flag

A member of Tentaculitida.

Triplicatella xinjia[247]

Sp. nov

Valid

Pan et al.

Early Cambrian

Шаблон:Flag

A member of Hyolitha.

Ursulinacaris[250]

Gen. et sp. nov

Pates, Daley & Butterfield

Cambrian

Mount Cap formation
Carrara Formation?

Шаблон:Flag
Шаблон:Flag?

A radiodont belonging to the family Hurdiidae. The type species is U. grallae.

Volynites nagaolingensis[226]

Sp. nov

Valid

Wei, Zong & Gong

Early Devonian

Nagaoling Formation

Шаблон:Flag

A member of Tentaculitida.

Yilingia[251]

Gen. et sp. nov

Valid

Chen et al.

Late Ediacaran

Шаблон:Flag

An early bilaterian, possibly related to panarthropods or annelids. Genus includes new species Y. spiciformis.

Research

Foraminifera

Research

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Acervoschwagerina gongendaniensis[286]

Sp. nov

Valid

Kobayashi in Kobayashi & Furutani

Permian (late Cisuralian)

Шаблон:Flag

A member of Fusulinida.

Ammodiscus jordanensis[287]

Sp. nov

Valid

Gennari and Rettori in Powell et al.

Early and Middle Triassic

Ma'in Formation

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag

A species of Ammodiscus.

Bispiraloconulus[288]

Gen. et sp. nov

Valid

Schlagintweit, Bucur & Sudar

Early Cretaceous (Berriasian)

Шаблон:Flag

Genus includes new species B. serbiacus.

Canalispina[289]

Gen. et sp. nov

Valid

Robles-Salcedo et al.

Late Cretaceous (Maastrichtian)

Шаблон:Flag

A member of the family Siderolitidae. Genus includes new species C. iapygia.

Chusenella tsochenensis[290]

Sp. nov

Valid

Zhang et al.

Middle Permian

Xiala Formation

Шаблон:Flag

A member of the family Schwagerinidae.

Cuniculinella omiensis[286]

Sp. nov

Valid

Kobayashi in Kobayashi & Furutani

Permian (late Cisuralian)

Шаблон:Flag

A member of Fusulinida.

Cyclopsinella roselli[291]

Sp. nov

Valid

Villalonga et al.

Late Cretaceous (Campanian)

Terradets Limestone

Шаблон:Flag

Globigaetania[292]

Gen. et sp. nov

Valid

Gennari & Rettori

Permian (Wordian to Capitanian)

Gnishik Formation

Шаблон:Flag
Шаблон:Flag

A member of the family Globivalvulinidae. Genus includes new species G. angulata.

Pachycolumella[293]

Gen. et 2 sp. nov

Valid

Septfontaine, Schlagintweit & Rashidi

Late Cretaceous (Maastrichtian) and Paleocene (Danian)

Tarbur Formation

Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag
Шаблон:Flag

The type species is P. elongata; genus also includes P. acuta.

Pseudochablaisia[294]

Gen. et sp. nov

Valid

Schlagintweit, Septfontaine & Rashidi

Late Cretaceous (Maastrichtian)

Tarbur Formation

Шаблон:Flag

A member of the family Pfenderinidae. Genus includes new species P. subglobosa.

Serrakielina[295]

Gen. et sp. nov

Valid

Schlagintweit & Rashidi

Paleocene

Шаблон:Flag

Genus includes new species S. chahtorshiana.

Simobaculites saundersi[296]

Sp. nov

Valid

Wilson & Kaminski in Wilson et al.

Cenozoic

Nariva Formation

Шаблон:Flag

Socotraella? yazdiana[295]

Sp. nov

Valid

Schlagintweit & Rashidi

Paleocene

Шаблон:Flag

Tambareauella[297]

Gen. et comb. et sp. nov

Valid

Boukhary & El Naby

Eocene

Шаблон:Flag
Шаблон:Flag

A member of the family Nummulitidae. The type species is "Operculina (Nummulitoides)" azilensis Tambareau (1966); genus also includes new species T. russeiesensis.

Other organisms

New taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Aguirrea[298]

Gen. et sp. nov

Valid

Teichert, Woelkerling & Munnecke

Silurian (Wenlock)

Högklint Formation

Шаблон:Flag

A coralline alga. Genus includes new species A. fluegelii.

Amsassia yushanensis[299]

Sp. nov

Valid

Lee et al.

Late Ordovician

Xiazhen Formation

Шаблон:Flag

A coral-like organism.

Anechosoma[300]

Gen. et sp. nov

Valid

Krings & Kerp

Early Devonian

Шаблон:Flag

A unicellular organism with possible affinities to the Glaucophyta or Chlorophyta. Genus includes new species A. oblongum.

Appendisphaera clustera[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Appendisphaera lemniscata[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Asterocapsoides fluctuensis[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Bacatisphaera sparga[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Baculiphyca brevistipitata[302]

Sp. nov

Valid

Ye et al.

Ediacaran

Шаблон:Flag

A macroalga.

Briareus robustus[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Briareus vasformis[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Cambrowania[303]

Gen. et sp. nov

Disputed

Tang & Xiao in Tang et al.

Early Cambrian

Hetang Formation

Шаблон:Flag

An organism of uncertain phylogenetic placement. Originally classified as an animal of uncertain phylogenetic placement, possibly a sponge or a bivalved arthropod; Slater & Budd (2019) contested its animal affinity, and considered its fossil material to be more likely collapsed hollow organic spheroidal acritarchs belonging to the genus Leiosphaeridia.[304][305] Genus includes new species C. ovata.

Casterlorum[7]

Gen. et sp. nov

Valid

Retallack

Ordovician (Darriwilian)

Lenoir Formation

Шаблон:Flag
(Шаблон:Flag)

An organism of uncertain affinities, originally described as a hornwort. Genus includes new species C. crispum.

Cavaspina conica[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Chiastozygus fahudensis[306]

Sp. nov

Valid

Al Rawahi & Dunkley Jones

Late Cretaceous (late Coniacian to late Campanian)

Fiqa Formation

Шаблон:Flag

A heterococcolith.

Circumpodium[307]

Gen. et sp. nov

Valid

Wisshak & Hüne

Middle Jurassic (Callovian)

Marnes de Dives Formation

Шаблон:Flag

A microfossil of uncertain phylogenetic placement. Genus includes new species C. enigmaticum.

Cyathinema[308]

Gen. et sp. nov

Valid

Agić et al.

Early Ediacaran

Nyborg Formation

Шаблон:Flag

A eukaryote of uncertain phylogenetic placement. The type species is C. digermulense.

Cymatiosphaeroides forabilatus[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Daedalosphaera[5]

Gen. et sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation

Шаблон:Flag

A spheroidal acritarch with inner wall sculpture. Genus includes new species D. digitisigna.

Dicrospinasphaera improcera[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Distosphaera? corniculata[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Dollyphyton[7]

Gen. et sp. nov

Valid

Retallack

Ordovician (Darriwilian)

Lenoir Formation

Шаблон:Flag
(Шаблон:Flag)

An organism of uncertain affinities, originally described as a moss belonging to the group Sphagnales. Genus includes new species D. boucotii.

Doushantuophyton? laticladus[302]

Sp. nov

Valid

Ye et al.

Ediacaran

Шаблон:Flag

A macroalga.

Edwardsiphyton[7]

Gen. et sp. nov

Valid

Retallack

Ordovician (Darriwilian)

Lenoir Formation

Шаблон:Flag
(Шаблон:Flag)

An organism of uncertain affinities, originally described as a moss belonging to the group Pottiales. Genus includes new species E. ovatum.

Enteromorphites magnus[302]

Sp. nov

Valid

Ye et al.

Ediacaran

Шаблон:Flag

A macroalga.

Eotylotopalla quadrata[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Ericiasphaera fibrilla[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Estrella[301]

Gen. et 2 sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil. Genus includes new species E. greyae and E. recta.

Germinosphaera alveolata[309]

Sp. nov

Valid

Miao et al.

Late Paleoproterozoic

Chuanlinggou Formation

Шаблон:Flag

An organic-walled microfossil interpreted as a unicellular eukaryote.

Hercochitina violana[310]

Sp. nov

Valid

Nõlvak & Liang in Liang et al.

Ordovician (Katian)

Viola Springs Formation

Шаблон:Flag

A chitinozoan.

Herisphaera[5]

Gen. et 2 sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation
Nelson Head Formation

Шаблон:Flag

A spiny acritarch with regularly distributed processes. Genus includes new species H. arbovela and H. triangula.

Janegraya[7]

Gen. et sp. nov

Valid

Retallack

Ordovician (Darriwilian)

Lenoir Formation

Шаблон:Flag
(Шаблон:Flag)

An organism of uncertain affinities, originally described as a liverwort belonging to the group Sphaerocarpales. Genus includes new species J. sibylla.

Knollisphaeridium coniformum[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Knollisphaeridium heliacum[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Konglingiphyton? laterale[302]

Sp. nov

Valid

Ye et al.

Ediacaran

Шаблон:Flag

A macroalga.

Laminasphaera[301]

Gen. et sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil. Genus includes new species L. capillata.

Laufeldochitina toilaensis[311]

Sp. nov

Valid

Nõlvak, Liang & Hints

Ordovician (Dapingian)

Шаблон:Flag

A chitinozoan.

Maxiphyton[302]

Gen. et sp. nov

Valid

Ye et al.

Ediacaran

Шаблон:Flag

A macroalga. Genus includes new species M. stipitatum.

Membranosphaera[301]

Gen. et sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil. Genus includes new species M. formosa.

Mengeosphaera flammelata[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Mengeosphaera lunula[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Mengeosphaera membranifera[312]

Sp. nov

Valid

Shang, Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

An acritarch.

Moorodinium crispa[313]

Sp. nov

Valid

Wainman et al.

Late Jurassic (late Kimmeridgian–early Tithonian)

Surat Basin

Шаблон:Flag

A dinoflagellate.

Nimbosphaera[314]

Gen. et sp. nov

Valid

Harper & Krings

Early Devonian

Windyfield chert

Шаблон:Flag

A microfossil resembling the sheathed zoosporangia of extant chytrids. Genus includes new species N. rothwellii.

Nunatsiaquus[5]

Gen. et sp. nov

Valid

Loron et al.

MesoproterozoicNeoproterozoic transition

Grassy Bay Formation

Шаблон:Flag

A spheroidal acritarch with inner wall sculpture. Genus includes new species N. cryptotorus.

Obelix[315]

Gen. et comb. nov

Valid

Morais et al.

Neoproterozoic

Callison Lake Formation
Chuar Group
(Kwagunt Formation)

Шаблон:Flag Шаблон:Flag

A vase-shaped microfossil representing tests of protists. The type species is "Cycliocyrillium" rootsi Cohen, Irvine & Strauss (2017); Morais et al. (2019) corrected the suffix for the specific epithet to rootsii.

Palaeoleptochlamys[316]

Gen. et sp. nov

Valid

Strullu-Derrien et al.

Early Devonian

Rhynie chert

Шаблон:Flag

A member of Amoebozoa belonging to the group Arcellinida. Genus includes new species P. hassii.

Palaeolyngbya kerpii[317]

Sp. nov

Valid

Krings

Early Devonian

Rhynie chert

Шаблон:Flag

A cyanobacterium with affinities to Oscillatoriaceae.

Paleoplastes[318]

Gen. et sp. nov

In press

Poinar & Vega

Late Cretaceous (Cenomanian)

Burmese amber

Шаблон:Flag

A possible dictyostelid. Genus includes new species P. burmanica. Announced in 2019; the final version of the article naming it was published in 2021.

Perexiflasca ventricosa[319]

Sp. nov

Valid

Krings & Harper

Early Devonian

Windyfield chert

Шаблон:Flag

A small, chytrid-like organism.

Rhyniotaxillus[320]

Gen. et sp. nov

Valid

Krings & Sergeev

Early Devonian

Rhynie chert

Шаблон:Flag

A minute coccoid cyanobacterium. Genus includes new species R. devonicus.

Rhyniovexator[300]

Gen. et sp. nov

Valid

Krings & Kerp

Early Devonian

Шаблон:Flag

Possibly a chytrid or a member of Aphelida. Genus includes new species R. penetrans.

Sinocylindra linearis[302]

Sp. nov

Valid

Ye et al.

Ediacaran

Шаблон:Flag

An organism of uncertain phylogenetic placement, possibly an alga or an exceptionally large prokaryote.

Skuadinium fusum[313]

Sp. nov

Valid

Wainman et al.

Late Jurassic (late Kimmeridgian–early Tithonian)

Surat Basin

Шаблон:Flag

A dinoflagellate.

Sporosphaera[321]

Gen. et sp. nov

Valid

Landon et al.

Ediacaran

Шаблон:Flag

A eukaryote reminiscent of acritarchs. Genus includes new species S. guizhouensis.

Staurolithites ormae[306]

Sp. nov

Valid

Al Rawahi & Dunkley Jones

Late Cretaceous (late Santonian to late Campanian)

Fiqa Formation

Шаблон:Flag

A heterococcolith.

Tanarium capitatum[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Tanarium uniformum[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Tetraphycus laminiformis[309]

Sp. nov

Valid

Miao et al.

Late Paleoproterozoic

Chuanlinggou Formation

Шаблон:Flag

An organic-walled microfossil, a colonial organism of uncertain phylogenetic placement, possibly a cyanobacteria.

Variomargosphaeridium varietatum[301]

Sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil.

Verrucosphaera[301]

Gen. et sp. nov

Valid

Liu & Moczydłowska

Ediacaran

Doushantuo Formation

Шаблон:Flag

A microfossil. Genus includes new species V. minima.

Research

  • Putative traces of life older than 3.95 Ga, reported from northern Labrador (Canada) by Tashiro et al. (2017)[322] are reevaluated by Whitehouse et al. (2019).[323]
  • Description of cellularly preserved microfossils from ~3.4 Ga-old deposits of the Kromberg Formation (South Africa), providing information on reproduction patterns of these organisms, is published by Kaźmierczak & Kremer (2019).[324]
  • El Albani et al. (2019) describe 2.1 billion-year-old fossils belonging to the Francevillian biota of Gabon, including pyritized string-shaped structures interpreted as produced by a multicellular or syncytial organism able to migrate laterally and vertically to reach food resources.[325]
  • A study on ca. 1.9 Ga hairpin-shaped trace fossils and discoid fossils from the Stirling Range Formation (Western Australia) is published by Retallack & Mao (2019), who interpret these fossils as evidence of early life on land.[326]
  • A study on organic-walled microfossils from the Cailleach Head Formation (Torridon Group, Scotland) is published by Wacey et al. (2019), who report exceptional preservation of sub-cellular detail in selected cells.[327]
  • Phosphatized three-dimensional fossil of a putative calcimicrobe Epiphyton are reported from the Neoproterozoic Dengying Formation (China) by Min et al. (2019).[328]
  • A study on the affinities of tubular microfossils from the Ediacaran Doushantuo Formation (China), i.e. Crassitubus, Quadratitubus, Ramitubus and Sinocyclocyclicus, is published by Sun et al. (2019), who reject the interpretation of these taxa as early animals.[329]
  • Lehn, Horodyski & Paim (2019) report the first known occurrence of Ediacaran organic-walled microfossils preserved in fine-grained siliciclastic strata of the Camaquã Basin (southernmost Brazil).[330]
  • A study on the structure, developmental biology and affinities of Caveasphaera costata from the Ediacaran Doushantuo Formation (China) is published by Yin et al. (2019).[331]
  • A study on possible cells and their appendages in fossils of Epiphyton from the Wuliuan of the North China Platform, and on their implications for the classification of this taxon, is published by Zhang et al. (2019).[332]
  • A study on the morphology and colony organization of Rhyniococcus uniformis (a Devonian organism resembling extant cyanobacteria in the genus Merismopedia), based on data from new specimens, is published by Krings & Harper (2019).[333]
  • A new method of assessing the morphology of fossil radiolarian specimens is presented by Kachovich, Sheng & Aitchison (2019), who apply their method to six specimens from the Cambrian Inca Formation (Australia) and Ordovician Piccadilly Formation (Canada) and evaluate the implications of their method for the studies of radiolarian evolution.[334]

Trace fossils

Шаблон:Main

History of life in general

Research related to paleontology that concerns multiple groups of the organisms listed above.

  • Experiments indicating that abiotic chemical gardening can mimic structures interpreted as the oldest known fossil microorganisms in both morphology and composition are conducted by McMahon (2019).[335]
  • A study on biomarkers recovered from cap dolomites of the Araras Group (Brazil), interpreted as evidence of the transition from a bacterial to eukaryotic dominated ecosystem after the Marinoan deglaciation, likely caused by massive bacterivorous grazing by ciliates, is published by van Maldegem et al. (2019).[336]
  • Biomarkers thought to be diagnostic for demosponges and cited as evidence of rise of animals to ecological importance prior to the Cambrian radiation are reported to be also synthesized by rhizarians by Nettersheim et al. (2019), who place the oldest unambiguous evidence for animals closer to the Cambrian Explosion.[337][338][339]
  • A study on crucial conditions affecting the evolution of a proto-metabolism in early life is published by Goldford et al. (2019).[340]
  • A study on the age of the Ediacaran fossils from the Podolya Basin (southwestern Ukraine) is published by Soldatenko et al. (2019).[341]
  • A study on occurrences of body and trace fossils in Ediacaran and lower Cambrian (Fortunian) rocks around the world is published by Muscente et al. (2019), who report evidence indicative of existence of a global, cosmopolitan assemblage unique to terminal Ediacaran strata, living between two episodes of biotic turnover which might be the earliest mass extinctions of complex life.[342]
  • A study on the diversification of animals and their behaviour in the Ediacaran–Cambrian interval, as indicated by fossil and environmental proxy records, is published by Wood et al. (2019), who interpret the fossil record as indicating that the rise of early animals was more likely a series of successive, transitional radiation events which extended from the Ediacaran to the early Paleozoic, rather than competitive or biotic replacement of the latest Ediacaran biotas by markedly distinct Cambrian ones.[343]
  • A study comparing the variability of Ediacaran faunal assemblages to that of more recent fossil and modern benthic assemblages is published by Finnegan, Gehling & Droser (2019).[344]
  • A study on the intensity of animal bioturbation and ecosystem engineering in trace fossil assemblages throughout the latest Ediacaran Nama Group (Namibia), evaluating the implications of this data for the knowledge of the causes of the disappearance of the Ediacaran biota, is published by Cribb et al. (2019).[345]
  • A study on mechanisms of skeletal biomineralization in early animals (focusing on Cloudina and Cambrian hyoliths and halkieriids) is published by Gilbert et al. (2019).[346]
  • A study on the relationship between atmospheric oxygen oscillations, the extent of shallow-ocean oxygenation and the animal biodiversity in the Cambrian period is published by He et al. (2019).[347]
  • A study on the course of the transition from microbial-dominated reef environments to animal-based reefs in the early Cambrian, as indicated by data from strata in the western Basin and Range of California and Nevada, is published by Cordie, Dornbos & Marenco (2019).[348]
  • An assemblage of early Cambrian small carbonaceous fossils and acritarchs, including possible oldest known annelid remains, is described from the siltstones of the Lappajärvi impact structure (Finland) by Slater & Willman (2019).[349]
  • A study aiming to explain the occurrence of the variety of trace fossils associated with Tuzoia carapaces from the Cambrian Burgess Shale (British Columbia, Canada) is published by Mángano, Hawkes & Caron (2019).[350]
  • Cambrian Lagerstätte from the Qingjiang biota (Shuijingtou Formation; Hubei, China), preserving fossils of diverse, ~518 million years old biota, is reported by Fu et al. (2019).[351][352]
  • A study aiming to infer whether a marked drop in known diversity of marine life during the period between the Cambrian explosion and the Great Ordovician Biodiversification Event (the Furongian Gap) is apparent, due to sampling failure or lack of rock, or real, is published by Harper et al. (2019).[353]
  • A study on the marine biodiversity changes throughout the first 120 million years of the Phanerozoic is published by Rasmussen et al. (2019).[354]
  • A study aiming to determine factors influencing early Palaeozoic marine biodiversity is published by Penny & Kröger (2019).[355]
  • A study on rates of origination and extinction at the genus level throughout early Paleozoic is published by Kröger, Franeck & Rasmussen (2019), who also present estimates of longevity, taxon age and taxon life expectancy of early Paleozoic marine genera.[356]
  • A review of biodiversity curves of marine organisms throughout early Paleozoic, indicating the occurrence of a large-scale, long-term radiation of life that started during late Precambrian time and was only finally interrupted in the Devonian Period, is published online by Harper, Cascales-Miñana & Servais (2019).[357]
  • A study on processes causing fluctuations of biodiversity of marine invertebrates throughout the Phanerozoic is published by Rominger, Fuentes & Marquet (2019).[358]
  • A study on the impact of environmental changes on the biodiversity of North American marine organisms throughout the Phanerozoic is published by Roberts & Mannion (2019).[359]
  • A study testing the hypothesis that the influence of ocean chemistry and climate on the ecological success of marine calcifiers decreased throughout the Phanerozoic is published by Eichenseer et al. (2019).[360]
  • A study on genus origination and extinction rates in the Ordovician on a global scale, for the paleocontinents Baltica and Laurentia, and for onshore and offshore areas, is published by Franeck & Liow (2019).[361]
  • First Middle Ordovician (DapingianDarriwilian) soft-bodied fossils from northern Gondwana (fossils of medusozoan possibly belonging to the genus Patanacta, possible members of the family Wiwaxiidae and an arthropod possibly belonging to the family Pseudoarctolepidae) are described from the Valongo Formation (Portugal) by Kimmig et al. (2019).[362]
  • New Konservat-Lagerstätte containing exceptionally preserved soft-bodied organisms, including the earliest record of Acoelomorpha, Turbellaria, Nemertea and Nematoda reported so far, is described from the Ordovician (Katian) Vauréal Formation (Canada) by Knaust & Desrochers (2019).[363]
  • A review of occurrence data of latest Ordovician benthic marine organisms is published by Wang, Zhan & Percival (2019), who evaluate the implications of the studied data for the knowledge of the course of the end-Ordovician mass extinction.[364]
  • A revision of Silurian fauna from the Pentland Hills (Scotland) described by Archibald Lamont in 1978 is published by Candela & Crighton (2019).[365]
  • A study on the course of graptolite extinctions during the middle Homerian biotic crisis and on the impact of this crisis on other marine invertebrates, as indicated by data from the Kosov Quarry section of the Prague Synform (Czech Republic), is published by Manda et al. (2019).[366]
  • Well-preserved fossil cryptic biota is reported from the submarine cavities of the Devonian (Emsian to Givetian) mud mounds in the Hamar Laghdad area (Morocco) by Berkowski et al. (2019).[367]
  • A study aiming to test and quantify the classification of Devonian biogeographic areas, based on distributional data of Devonian trilobite, brachiopod and fish taxa, is published by Dowding & Ebach (2019).[368]
  • A study on patterns of local richness of terrestrial tetrapods throughout the Phanerozoic is published by Close et al. (2019).[369]
  • Description of tetrapod and fish fossils from the coastal locality of Burnmouth, Scotland (Ballagan Formation), associated plant material and sedimentological context of these fossils is published by Clack et al. (2019), who interpret these fossils as evidence of the potential richness of the Tournaisian fauna, running counter to the assumption of a depauperate nonmarine fauna following the end-Devonian Hangenberg event.[370]
  • A study on the impact of climate changes during the Carboniferous–Permian transition on the evolution of land-living vertebrates is published by Pardo et al. (2019).[371]
  • A study aiming to test one of the scenarios proposed by Robert L. Carroll in 1970 to explain the origin of the amniotic egg, based on data from Permo-Carboniferous tetrapods, is published by Didier, Chabrol & Laurin (2019).[372]
  • An overview of the studies researching biodiversity changes in the Permian and their links to volcanism is published by Chen & Xu (2019).[373]
  • Haridy et al. (2019) report the occurrence of overgrowth of palatal dentition of Cacops and Captorhinus by a new layer of bone to which the newest teeth are then attached (the overgrowth pattern also documented in early fishes), and evaluate the implications of this finding for the knowledge of the origin of teeth.[374]
  • A study on the severity of the end-Guadalupian extinction event is published online by Rampino & Shen (2019).[375]
  • A study on the ecology of Permian tetrapods from the Abrahamskraal Formation (South Africa), as indicated by stable oxygen isotope compositions of phosphate from teeth and bones used as a proxy for water dependence, is published online by Rey et al. (2019).[376]
  • Two Permian tetrapod assemblages, recovered from the northernmost point at which the lowest Beaufort Group has been targeted for collecting fossils, are reported from the southern Free State (South Africa) by Groenewald, Day & Rubidge (2019), who evaluate the implications of these fossils for the knowledge of faunal provincialism within the Middle to Late Permian Karoo Basin.[377]
  • A study aiming to determine which Permian tetrapod assemblage zones are present in the vicinity of Victoria West (Northern Cape, South Africa), and to reassess the biostratigraphic provenance of specimens collected historically in this area (including the holotype of Lycaenops ornatus), is published by Day & Rubidge (2019).[378]
  • A study on the course of the turnover from the Daptocephalus to Lystrosaurus Assemblage Zones of the Karoo Basin is published by Gastaldo et al. (2019).[379]
  • A study on the timing of the extinction of latest Permian vertebrates in the Karoo Basin of South Africa is published online by Rampino et al. (2019).[380]
  • A study on the identification and position of the terrestrial end-Permian mass extinction in southern African sediments, based on data from a new site in the South African Karoo Basin, is published online by Botha et al. (2019).[381]
  • A study on the functional diversity of middle Permian and Early Triassic marine paleocommunities in the area of present-day western United States, and on its implications for the knowledge of functional re-organization of these communities in the aftermath of the Permian–Triassic extinction event, is published by Dineen, Roopnarine & Fraiser (2019).[382]
  • A study aiming to explain high biodiversity preserved in the Triassic Cassian Formation (Italy) is published online by Roden et al. (2019).[383]
  • A study on shark, sizable carnivorous archosaur, big herbivorous tetrapod and probable turtle bromalites (coprolites and possibly some cololites) from a turtle-dominated fossil assemblage from the Upper Triassic Poręba site (Poland) is published by Bajdek et al. (2019), who evaluate the implications of their findings for inferring the diet of the Triassic turtle Proterochersis porebensis.[384]
  • A study on seawater oxygenation during the Early Jurassic and its impact on the recovery of marine benthos after the Triassic–Jurassic extinction event, as indicated by data from Blue Lias Formation (United Kingdom), is published by Atkinson & Wignall (2019).[385]
  • A study on the patterns and processes of recovery of marine fauna after the Toarcian oceanic anoxic event, as indicated by data from the Cleveland Basin (Yorkshire, United Kingdom), is published by Caswell & Dawn (2019).[386]
  • A study on changes of land vegetation resulting from the Toarcian oceanic anoxic event is published by Slater et al. (2019).[387]
  • Skeletal elements of Oxfordian ichthyosaurs and plesiosaurs are reported from the Kingofjeld mountain (north-east Greenland) by Delsett & Alsen (2019).[388]
  • New marine reptile-bearing localities documenting the TithonianBerriasian transition at the High Andes (Mendoza Province, Argentina) are reported by Fernández et al. (2019).[389]
  • A study on microvertebrate fossils from the Upper Jurassic or Lower Cretaceous of Ksar Metlili (Anoual Syncline, Morocco), evaluating their palaeobiogeographical implications, and on the age of this fauna, is published online by Lasseron et al. (2019).[390]
  • Description of mid-Cretaceous invertebrate fauna from Batavia Knoll (eastern Indian Ocean), and a study on its similarities to other Cretaceous faunas from around the Indian Ocean, is published by Wild & Stilwell (2019).[391]
  • A study on the age of the vertebrate fauna from the Cretaceous Cerro Barcino Formation (Argentina) is published online by Krause et al. (2019).[392]
  • Possible amphibian, gastropod and insect egg masses are described from the Cretaceous amber from Myanmar by Xing et al. (2019).[393]
  • A study on coprolites from the Upper Cretaceous deposits in the Münster Basin (northwestern Germany), evaluating their implications for the knowledge of Cretaceous trophic structures and predator–prey interactions, is published by Qvarnström et al. (2019).[394]
  • New vertebrate assemblage from the upper Turonian Schönleiten Formation of Gams bei Hieflau (Austria) is described by Ősi et al. (2019).[395]
  • Turonian marine vertebrate fossils from the Huehuetla quarry (Puebla, Mexico) are described by Alvarado-Ortega et al. (2019).[396]
  • A study on the biogeography of Cretaceous terrestrial tetrapods is published by Kubo (2019).[397]
  • A study on the structure and contents of a large piece of amber attached to a jaw of a specimen of Prosaurolophus maximus from the Cretaceous Dinosaur Park Formation (Alberta, Canada), evaluating the implications of this finding for the knowledge of the habitat and taphonomy of the dinosaur, is published by McKellar et al. (2019).[398]
  • An accumulation of fossil eggshells of bird, crocodylomorph and gekkotan eggs is reported from the Late Cretaceous Oarda de Jos locality in the vicinity of the city of Sebeș (Romania) by Fernández et al. (2019).[399]
  • A review of the fossil record of Late Cretaceous and Paleogene vertebrates from the Seymour Island (Antarctica) is published by Reguero (2019).[400]
  • A study on the evolutionary history of the family Pospiviroidae, aiming to assess possible impact of the Cretaceous–Paleogene extinction event on the divergence rates in this family, is published by Bajdek (2019).[401]
  • A study on calcareous nanoplankton and planktic foraminiferal assemblages in a Cretaceous-Paleogene section from the peak ring of the Chicxulub crater, and on their implications for the knowledge of recovery of plankton after the Cretaceous–Paleogene extinction event, is published by Jones, Lowery & Bralower (2019).[402]
  • A study on the course of recovery of the nanoplankton communities after the Cretaceous–Paleogene extinction event is published by Alvarez et al. (2019), who report evidence indicative of 1.8 million years of exceptional volatility of post-extinction communities and indicating that the emergence of a more stable equilibrium-state community coincided with indicators of carbon cycle restoration and a fully functioning biological pump.[403]
  • A study on the timing and nature of recovery of benthic marine ecosystems of Antarctica after the Cretaceous–Paleogene mass extinction, as indicated by data from fossils of benthic molluscs, is published by Whittle et al. (2019).[404]
  • A study on the drivers and tempo of biotic recovery after Cretaceous–Paleogene mass extinction, as indicated by data from the Corral Bluffs section of the Denver Basin (Colorado, United States), is published by Lyson et al. (2019).[405]
  • Description of the vertebrate assemblage from the Oligocene Shine Us locality in the Khaliun Basin (Mongolia) is published by Daxner-Höck et al. (2019).[406]
  • Description of reptile and amphibian fossils from the early Miocene localities of the Kilçak section (Turkey) is published by Syromyatnikova et al. (2019).[407]
  • Description of fossil fish, amphibian and reptilian fauna from the middle Miocene locality Gračanica (Bosnia and Herzegovina) is published online by Vasilyan (2019).[408]
  • A study on the vertebrate fossils from the early Clarendonian localities within the Goliad Formation in Bee and Live Oak Counties in Texas (comprising the Lapara Creek Fauna), and on the stratigraphic context of these localities, is published by May (2019).[409]
  • New late Miocene vertebrate assemblage, including turtle, rodent and xenarthran fossils (among which is the oldest record of an armadillo belonging to the genus Dasypus reported so far), is described from the Los Alisos locality (Guanaco Formation, Argentina) by Ercoli et al. (2019).[410]
  • Description of a diverse late Miocene marine fauna from the Bloomfield Quarry (Wilson Grove Formation; California, United States), including the most diverse assemblage of fossil walruses yet reported worldwide from a single locality, is published by Powell et al. (2019).[411]
  • Fish, turtle and mammals fossils are described from a locality near Whitehorse (Yukon, Canada), probably of Miocene age, by Eberle et al. (2019).[412]
  • A study on microscopic traces of hominin and animal activities in the Denisova Cave (Russia), providing the information on the use of this cave over the last 300,000 years, is published by Morley et al. (2019).[413]
  • A study on the age of the Pleistocene vertebrate assemblage from the Khok Sung locality (Thailand) is published by Duval et al. (2019).[414]
  • Revision of reptile and amphibian fossils from the late Pleistocene collection of the "Caverne Marie-Jeanne" (Hastière-Lavaux, Namur Province, Belgium) is published by Blain et al. (2019).[415]
  • New late Pleistocene site Tsaramody (Sambaina basin, Madagascar), preserving diverse subfossil remains of vertebrates, is reported by Samonds et al. (2019).[416]
  • A study on the paleoecology and diet of late Pleistocene terrestrial vertebrates known from an asphalt deposit (Project 23, Deposit 1) at Rancho La Brea (California, United States) is published online by Fuller et al. (2019).[417]
  • A study on changes of vegetation in southern Borneo over the past 40,000  calibrated years BP, as indicated by data from Saleh Cave (South Kalimantan, Indonesia), is published by Wurster et al. (2019).[418]
  • Late Quaternary fossils of vertebrates are described from caves in the Manning Karst Region of eastern New South Wales (Australia) by Price et al. (2019).[419]
  • A study aiming to determine the relationships between extinctions of megafauna, climatic changes and patterns of human appearance in south-eastern Australia over the last 120,000 years is published by Saltré et al. (2019).[420]
  • A study on the causes of Holocene extinction of megafauna of Madagascar is published by Godfrey et al. (2019).[421]
  • A review discussing possible links between the fossil record of marine biodiversity, nutrient availability and primary productivity is published online by Martin & Servais (2019).[422]
  • A study on factors which determined the relative intensity of marine extinctions during greenhouse–icehouse transitions in the Late Ordovician and the Cenozoic is published online by Saupe et al. (2019).[423]
  • A study on the possible relationship between speciation and extinction rates of different groups of organisms and the ages of these groups, as indicated by data from extant and fossil species, is published by Henao Diaz et al. (2019).[424][425][426]
  • A study on the evolution of bite force of amniotes, as indicated by data from extant and fossil taxa, is published by Sakamoto, Ruta & Venditti (2019).[427]
  • A study on the phylogenetic distribution, morphological variation and functions of apicobasal ridges (elevated ridges of tooth enamel) in aquatic reptiles and mammals, as indicated by data from extant and fossil taxa, is published by McCurry et al. (2019).[428]
  • A study on the impact of uncertainty of stratigraphic age of fossils on studies estimating species divergence times which incorporate fossil taxa, based on data from the fossil record of North American mammals and from the dataset of extant and fossil cetaceans, is published by Barido-Sottani et al. (2019).[429]
  • A study evaluating the impact of information about stratigraphic ranges of fossil taxa on the analyses of timing of evolutionary divergence is published online by Püschel et al. (2019).[430]
  • A study on anatomical distribution, abundance, geometry, melanin chemistry and elemental inventory of melanosomes in tissues of extant vertebrates, evaluating their implications for reconstructions of internal soft-tissue anatomy in fossil vertebrates, is published by Rossi et al. (2019).[431]
  • A study on the chronostratigraphy and biostratigraphy of Cenozoic vertebrate (mostly mammal) fossils from the South Carolina Coastal Plain is published by Albright et al. (2019).[432]

Other research

Other research related to paleontology, including research related to geology, palaeogeography, paleoceanography and paleoclimatology.

  • A study on the biological oxygen production during the Mesoarchean, as indicated by data from Mesoarchean shales of the Mozaan Group (Pongola Supergroup, South Africa) preserving record of a shallow ocean "oxygen oasis", is published by Ossa Ossa et al. (2019).[433]
  • A study on the extent of the oxygenation of ocean waters over continental shelves before the Great Oxidation Event, as indicated by data from 2.5-billion-year-old Mount McRae Shale (Australia), is published by Ostrander et al. (2019).[434]
  • A study on the extent of the oxygenation of shallow oceans 2.45 billion years ago is published by Rasmussen et al. (2019), who interpret their findings as indicating that oxygen levels both the surface oceans and atmosphere were exceedingly low before the Great Oxidation Event, which the authors interpret as directly caused by evolution of oxygenic photosynthesis.[435]
  • A study aiming to determine whether the overall size of the biosphere decreased at the end of the Great Oxidation Event, based on data on isotope geochemistry of sulfate minerals from the Belcher Group (subarctic Canada), is published by Hodgskiss et al. (2019).[436]
  • Evidence of a burst of mantle activity at the end of the Archean (around 2.5 billion years ago) is presented by Marty et al. (2019), who interpret their findings as lending credence to models advocating a magmatic origin for environmental changes such as the Great Oxidation Event.[437]
  • A study aiming to determine the effects of competition of early anoxygenic phototrophs and primitive oxygenic phototrophs on the Earth system, especially on the large-scale oxygenation of Earth's atmosphere ~2.3 billion years ago, is published by Ozaki et al. (2019).[438]
  • A study on the geochemistry of mat-related structures and their host sediments from the Francevillian Formation (Gabon) is published by Aubineau et al. (2019), who evaluate the implications of their findings for the knowledge whether ancient microbes induced illitisation (conversion of smectite to illite–smectite mixed-layer minerals), and for the knowledge of Earth's climate and ocean chemistry in the Paleoproterozoic.[439]
  • A study on the organic geochemical (biomarker) signatures of the 1.38-billion-years-old black siltstones of the Velkerri Formation (Australia), and on their implications for inferring the microbial diversity and palaeoenvironment of the Proterozoic Roper Seaway, is published by Jarrett et al. (2019).[440]
  • A study on the origins of putative stromatolites and associated carbonate minerals from lacustrine sedimentary rocks of the 1.1-billion-years-old Stoer Group is published by Brasier et al. (2019).[441]
  • A study suggesting a link between early evolution and diversification of animals and high availability of copper in the late Neoproterozoic is published by Parnell & Boyce (2019).[442]
  • A study aiming to determine the cause of the uniquely high amplitudes of Neoproterozoic δ13C excursions is published by Shields et al. (2019).[443]
  • A study evaluating the possible relationship between the Cryogenian magmatic activity and the evolution of early life, based on data from the Cryogenian Yaolinghe Group (China), is published by Long, Zhang & Luo (2019).[444]
  • Evidence for oxygenated waters near ice sheet grounding lines during the Cryogenian is presented by Lechte et al. (2019).[445]
  • A study on ocean oxygen levels during the Ediacaran Shuram negative C-isotope Excursion and the middle Ediacaran, and on their implications for the evolution of the Ediacaran biota, is published by Zhang et al. (2019).[446]
  • A study on the causes of widespread preservation of soft-bodied organisms in sandstones of the Ediacara Member in South Australia is published by Liu et al. (2019).[447]
  • A study on the seafloor oxygen fugacity in the time of the emergence of the earliest known benthic animals, as inferred from data from the latest Ediacaran Dengying Formation (China), is published by Ding et al. (2019).[448]
  • A study on the process of fossilization of Ediacaran organisms, and on its impact on the preservation of the external shape of these organisms, is published by Bobrovskiy et al. (2019).[449]
  • A study on the global extent of the oxygenation of seafloor, surface oceans and atmosphere during early Cambrian is published by Dahl et al. (2019), who report evidence of two major oceanic anoxic events in the early Cambrian.[450]
  • A study on nitrogen isotope and organic carbon isotope data from the lower Cambrian Niutitang Formation (China) is published online by Xu et al. (2019), who link nitrogen cycle perturbations to animal diversification during the early Cambrian.[451]
  • A study on the paleoecological characteristics of Cambrian marine ecosystems of central Sonora (Mexico) is published by Romero et al. (2019).[452]
  • A study on seawater temperatures during the Cambrian, as indicated by data from oxygen isotope analyses of Cambrian brachiopod shells, is published by Wotte et al. (2019).[453]
  • A study on bottom-water redox conditions in the late Cambrian Alum Shale Sea, as indicated by sedimentary molybdenum contents of the Alum Shale, is published by Dahl et al. (2019), who interpret their findings as indicating that anoxic sulfidic bottom waters were an intermittent rather than persistent feature of Cambrian oceans, and that early animals invaded the seafloor during oxygenated periods.[454]
  • A study on the paleogeographic position of all major Phanerozoic arc-continent collisions, comparing it with the latitudinal distribution of ice-sheets throughout the Phanerozoic, is published by Macdonald et al. (2019).[455]
  • A study aiming to determine whether the Ordovician meteor event directly affected Earth's climate and biota is published by Schmitz et al. (2019).[456]
  • A review of the evidence of evolutionary radiation of animals throughout the Great Ordovician Biodiversification Event, and of environmental changes coincident with these biotic changes, is published by Stigall et al. (2019).[457]
  • A study on conodont oxygen isotope compositions in Ordovician samples from Argentine Precordillera and Laurentia, and on their implications for the knowledge of palaeothermometry and drift of the Precordillera in the early Paleozoic, is published online by Albanesi et al. (2019).[458]
  • A study on carbon isotope data from stratigraphic sections at Germany Valley (West Virginia) and Union Furnace (Pennsylvania) in the Central Appalachian Basin, evaluating its implications for the knowledge of change in atmospheric oxygen levels during the late Ordovician and its possible relationship with early diversification of land plants, is published by Adiatma et al. (2019).[459]
  • Signatures of Devonian (Famennian) forests and soils preserved in black shales in the southernmost Appalachian Basin (Chattanooga Shale; Alabama, United States) are presented by Lu et al. (2019).[460]
  • A study examining the intensity of explosive volcanism from 400 to 200 million years ago, and evaluating its impact on the late Paleozoic Ice Age, is published by Soreghan, Soreghan & Heavens (2019).[461]
  • Description of Cisuralian charcoal from the Barro Branco coal seam (Siderópolis Member of the Rio Bonito Formation, Brazil), and a study on its implications for reconstruction of palaeo-wildfire occurrences in peat-forming vegetation through the Late Palaeozoic in Gondwana, is published by Benicio et al. (2019).[462]
  • A study on the extent and causes of the end-Capitanian extinction event, based on data from the Middle to Late Permian section of the Sverdrup Basin (Ellesmere Island, Canada), is published online by Bond, Wignall & Grasby (2019).[463]
  • A study on the ocean chemistry during the Permian–Triassic extinction event, as indicated by data from a new stratigraphic section in Utah, and on its implications for the knowledge of the causes of this extinction, is published by Burger, Estrada & Gustin (2019).[464]
  • A study aiming to determine the stratigraphic position of the end-Permian biotic crisis in the Sydney Basin (Australia) is published by Fielding et al. (2019), who also attempt to determine the climate changes in this region concurrent with the end-Permian extinction.[465]
  • A study on shifts in volcanic activity across the Permian-Triassic boundary, as indicated by measurements of mercury in marine sections across the Northern Hemisphere, is published by Shen et al. (2019).[466]
  • A study on mercury enrichments in Permian-Triassic boundary sections from Lubei (South China craton) and Dalongkou (Junggar terrane), and on their implications for the knowledge of volcanic activity during the Permian-Triassic transition, is published by Shen et al. (2019).[467]
  • Evidence of the environmental transition from meandering to braided rivers and of the development of desert-like conditions in the earliest Triassic is reported from Permian-Triassic boundary sections in Shanxi (China) by Zhu et al. (2019).[468]
  • A study on the nitrogen isotope variations in oceanic waters in the aftermath of the end-Permian mass extinction is published by Sun et al. (2019), whose conceptual model indicates ammonium intoxication of the oceans during this time period.[469]
  • A study on microbially induced sedimentary structures from the Lower Triassic Blind Fiord Formation (Arctic Canada), evaluating their implications for the knowledge of the course of biotic recovery in the aftermath of the Permian–Triassic extinction event, is published online by Wignall et al. (2019).[470]
  • A study on the oxygen isotope compositions of discrete conodont elements from the Lower Triassic Mianwali Formation (Pakistan), and on their implications for inferring the timing of temperature changes and the interrelationship between climate and biodiversity patterns during the Smithian-Spathian biotic crisis, is published by Goudemand et al. (2019).[471]
  • A study on nutrient availability through the Early to Middle Triassic along the northern margin of Pangea is published online by Grasby et al. (2019).[472]
  • A study on the character and extent of the Triassic Boreal Ocean delta plain across the area of the present-day Barents Sea, interpreted as the largest delta plain reported so far, is published by Klausen, Nyberg & Helland-Hansen (2019).[473]
  • A study aiming to determine links between volcanic activity in the Central Atlantic magmatic province, elevated concentrations of mercury in marine and terrestrial sediments and abnormalities of fossil fern spores across the Triassic-Jurassic boundary in southern Scandinavia and northern Germany is published by Lindström et al. (2019).[474]
  • A study aiming to reconstruct the palaeoenvironmental changes of the late Pliensbachian outside of Western Tethys Ocean and to test their temporal relation to large igneous province volcanism is published by De Lena et al. (2019).[475]
  • Krencker, Lindström & Bodin (2019) present sedimentological, paleontological and geochemical evidence from the Central High Atlas Basin (Morocco) and Jameson Land (Greenland) indicative of the occurrence of a major sea-level drop prior to the onset of the Toarcian oceanic anoxic event.[476]
  • A study on the duration of the Toarcian oceanic anoxic event, as indicated by data from the Talghemt section in the High Atlas (Morocco), is published by Boulila et al. (2019).[477]
  • A study on the Middle Jurassic palaeoenvironment of La Voulte (France), as indicated by data from exceptionally preserved eyes of the polychelidan lobster Voulteryon parvulus and from epibiontic brachiopods associated with V. parvulus, is published by Audo et al. (2019).[478]
  • A study comparing the Jurassic floras of the Ayuquila Basin and the Otlaltepec Basin (Mexico) and evaluating their implications for the knowledge of the Jurassic environments of these basins is published by Velasco-de León et al. (2019).[479]
  • A study on Jurassic paleomagnetism, based on an updated set of Jurassic paleopoles from Adria (Italy), is published by Muttoni & Kent (2019).[480]
  • A study on the chronostratigraphy of the Upper Jurassic Morrison Formation is published by Maidment & Muxworthy (2019).[481]
  • Evidence of repeated significant oceanic and biotic turnovers in the area of the present-day Gulf of Mexico at the Jurassic-Cretaceous transition is presented by Zell et al. (2019).[482]
  • A study on the age of the dinosaur-bearing Upper Jurassic–Lower Cretaceous sediments of western Maestrazgo Basin and South-Iberian Basin (eastern Spain), aiming to also reconstruct the palaeoenvironments of this area on the basis of data from these sediments, is published by Campos-Soto et al. (2019).[483]
  • A review of data on the Jurassic and Cretaceous climates of Siberia is published by Rogov et al. (2019).[484]
  • A study on global climatic changes during the Early Cretaceous, focusing on the duration and magnitude of Early Cretaceous cold episodes, is published by Vickers et al. (2019).[485]
  • Evidence from the Lower Cretaceous strata around the southern margin of the Eromanga Basin (Australia) indicative of cold (limited glacial and/or seasonal freezing) conditions persisting in Southern Australia through the Hauterivian and the Aptian is presented by Alley, Hore & Frakes (2019).[486]
  • A study on phototropism in extant trees from Beijing and Jilin Provinces and fossil tree trunks from the Jurassic Tiaojishan and Tuchengzi formations in Liaoning and Beijing regions (China), and on its implications for inferring the history of the rotation of the North China Block, is published by Jiang et al. (2019).[487]
  • A study on the age of the Cretaceous Cloverly Formation is published by D'Emic et al. (2019).[488]
  • Evidence from the chronostratigraphy, fossil content, bracketing facies and ages of the Cretaceous Wayan Formation of Idaho and Vaughn Member of the Blackleaf Formation of Montana, indicating that they represent the same depositional system prior to disruption by subsequent tectonic and volcanic events, is presented by Krumenacker (2019).[489]
  • A study on Cenomanian plants from the Redmond no.1 mine near Schefferville (Redmond Formation; Labrador Peninsula, Canada) and on their implications for the knowledge of paleoclimate of this site is published by Demers-Potvin & Larsson (2019).[490]
  • The first high-resolution record of CenomanianTuronian paleotemperatures from the Southern Hemisphere, as indicated by data from the Ocean Drilling Program Site 1138 on the Kerguelen Plateau, is presented by Robinson et al. (2019).[491]
  • A study on the impact of marine biogeochemical processes on the Cretaceous Thermal Maximum is published by Wallmann et al. (2019).[492]
  • A study on the age of the Upper Cretaceous Wadi Milk Formation (Sudan) is published by Owusu Agyemang et al. (2019).[493]
  • A study on Cenomanian to Coniacian polar environmental conditions at eight locations in northeast Russia and northern Alaska is published online by Spicer et al. (2019).[494]
  • A study on variability of carbon, oxygen and nitrogen isotopes in multiple tissues from a wide array of extant vertebrate taxa from the Atchafalaya River Basin in Louisiana (inferred to be an environmental analogue to the Late Cretaceous coastal floodplains of North America), and on its implications for formulating and testing predictions about ancient ecological communities based on stable isotope data from fossil specimens, is published by Cullen et al. (2019).[495]
  • A study on the general distribution and stratigraphy of the lower shale member of the Campanian Aguja Formation (Texas, United States), and a revision of all significant larger vertebrate fossil specimens from these strata, is published by Lehman et al. (2019).[496]
  • High-precision dating for the Battle Formation (Alberta, Canada) is presented by Eberth & Kamo (2019).[497]
  • High-precision dating and the first calibrated chronostratigraphy for the Horseshoe Canyon Formation (Alberta, Canada) is presented by Eberth & Kamo (2019).[498]
  • A study on the Maastrichtian climate of Arctic Alaska, based on data from the Prince Creek Formation, is published by Salazar-Jaramillo et al. (2019).[499]
  • Studies on the timing of the Deccan Traps volcanism close to the Cretaceous-Paleogene boundary are published by Schoene et al. (2019), who interpret their findings as indicative of four high-volume eruptive periods close to the Cretaceous-Paleogene boundary, the first of which occurred tens of thousands of years prior to both the Chicxulub bolide impact and Cretaceous–Paleogene extinction event[500] and by Sprain et al. (2019), who interpret their findings as indicating that a steady eruption of the flood basalts mostly occurred in the earliest Paleogene.[501]
  • A study on the environmental variability before and across the Cretaceous-Paleogene mass extinction, as inferred from data on the calcium isotope ratios of aragonitic mollusc shells from the Lopez de Bertodano Formation (Antarctica), is published online by Linzmeier et al. (2019).[502]
  • A turbulently deposited sediment package directly overlain by the Cretaceous–Paleogene boundary tonstein is reported from the Tanis site (Hell Creek Formation, North Dakota, United States) by DePalma et al. (2019), who interpret their findings as indicating that deposition occurred shortly after a major bolide impact, and might have been caused by the Chicxulub impact.[503]
  • A study on the immediate aftermath of the Chicxulub impact at the Cretaceous–Paleogene boundary, based on data from the Chicxulub crater, is published by Gulick et al. (2019).[504]
  • Evidence of rapid ocean acidification in the aftermath of the Chicxulub impact and of the protracted Earth system recovery after the Cretaceous–Paleogene extinction event is presented by Henehan et al. (2019).[505]
  • The longest, highest resolution, stratigraphically continuous, single-species benthic foraminiferal carbon and oxygen isotope records for the Late Maastrichtian to Early Eocene from a single site in the South Atlantic Ocean, providing information on the evolution of climate and carbon-cycling during this time period, are presented by Barnet et al. (2019).[506]
  • O'Leary et al. (2019) publish a monograph on the sedimentology and sequence stratigraphy of the part of Mali which was covered by an ancient epeiric sea known as the Trans-Saharan Seaway during the Late Cretaceous and early Paleogene, provide the first formal description of and nomenclature for the Upper Cretaceous and lower Paleogene geological formations of this region, and revise fossil flora and fauna of this region.[507]
  • Zeebe & Lourens (2019) provide a new absolute astrochronology up to 58 Ma and a new Paleocene–Eocene boundary age.[508]
  • A study on stomata of fossil specimens of members of the family Lauraceae from the Eocene of Australia and New Zealand, evaluating their implications for reconstructions of Eocene pCO2 levels, is published by Steinthorsdottir et al. (2019).[509]
  • Climate simulations capturing major climatic features of the Early Eocene and the Paleocene–Eocene Thermal Maximum in a state-of-the-art Earth system model are presented by Zhu, Poulsen & Tierney (2019).[510]
  • A study evaluating the utility of membrane lipids of members of Thaumarchaeota (now Nitrososphaerota) as proxies for the carbon isotope excursion and surface ocean warming, and assessing their implications for the knowledge of the source and size of carbon emissions during the Paleocene–Eocene Thermal Maximum, is published by Elling et al. (2019).[511]
  • A study on abundant black charcoal shards from Paleogene sites of Wilson Lake B (New Jersey) and Randall's Farm (Maryland) is published by Fung et al. (2019), who interpret these shards as most likely to be evidence of widespread wildfires at the Paleocene-Eocene boundary caused by extraterrestrial impact.[512]
  • A study on the impact of carbon-based greenhouse gas fluxes associated with the North Atlantic Igneous Province on the onset of the Paleocene–Eocene Thermal Maximum is published by Jones et al. (2019).[513]
  • Evidence from the Deep Ivorian Basin offshore West Africa (equatorial Atlantic Ocean), indicating that peak warming during the Middle Eocene Climatic Optimum was associated with upper-ocean stratification, decreased export production, and possibly harmful algal blooms, is presented by Cramwinckel et al. (2019).[514]
  • New stable isotopes record of the Middle Eocene Climatic Optimum event is reported from eastern Turkey by Giorgioni et al. (2019).[515]
  • A study on variations of ocean circulation and marine bioproductivity related to the beginnings of the formation of the Antarctic Circumpolar Current, based on data from Eocene and Oligocene sedimentary drift deposits east of New Zealand, is published by Sarkar et al. (2019).[516]
  • A study on changes in surface water temperature in the eastern North Sea Basin during the late Priabonian to earliest Rupelian is published by Śliwińska et al. (2019).[517]
  • A study linking the onset or strengthening of an Atlantic meridional overturning circulation to the closure of the Arctic–Atlantic gateway at the Eocene–Oligocene transition is published by Hutchinson et al. (2019).[518]
  • A study on the timing of the uplift of the Tibetan Plateau, as indicated by the discovery of the Oligocene palm fossils in the Lunpola Basin in Tibet, is published by Su et al. (2019).[519]
  • A review of vertebrate fossils from the Tibetan Plateau, evaluating their implications for inferring the course of the uplift of the Tibetan Plateau, is published by Deng et al. (2019).[520]
  • A study on the impact of changing Eocene paleogeography and climate on the utility of stable isotope paleoaltimetry methods in the studies aiming to reconstruct the elevation history of the Tibetan Plateau is published by Botsyun et al. (2019).[521][522][523]
  • A study on the causes of the long-term climate cooling during the Neogene is published by Rugenstein, Ibarra & von Blanckenburg (2019).[524]
  • A study on the climatic and environmental conditions in the Loperot site (Kenya) in the early Miocene is published by Liutkus-Pierce et al. (2019).[525]
  • A study on the timing and course of the separation of the Indian Ocean and the Mediterranean Sea in the Miocene is published by Bialik et al. (2019).[526]
  • A study comparing changes of the export of intermediate-depth Pacific waters to the western North Atlantic prior to the closure of the Central American Seaway with records of strength of the Atlantic meridional overturning circulation, evaluating the implications of this data for the knowledge of the timing of closure of the Central American Seaway, is published by Kirillova et al. (2019).[527]
  • A study on climatic and environmental changes in central Andes during the late Miocene is published by Carrapa, Clementz & Feng (2019).[528]
  • A study on the exact age of the marine fauna from the Miocene Chilcatay and Pisco formations (Peru), and on its implications for reconstructions of local paleoenvironment, is published online by Bosio et al. (2019).[529]
  • A study on the origin of the African C4 savannah grasslands is published by Polissar et al. (2019).[530]
  • A study on the anatomical traits of teeth and inferred diet of bovids, suids and rhinocerotids from Kanapoi, and on their implications for reconstructing the environments of this site, is published online by Dumouchel & Bobe (2019).[531]
  • New spatial data on the Plio-Pleistocene Bolt's Farm pits from the Cradle of Humankind site (South Africa) is presented by Edwards et al. (2019), who also attempt to provide key biochronological ages for the Bolt's Farm deposits.[532]
  • A study on the global mean sea level during the Pliocene mid-Piacenzian Warm Period is published by Dumitru et al. (2019).[533]
  • A study on the amplitude of sea-level variations during the Pliocene is published by Grant et al. (2019).[534]
  • Simulations of coevolution of climate, ice sheets and carbon cycle over the past 3 million years are presented by Willeit et al. (2019).[535]
  • A study on the age of the Sahara, as indicated by data from Pliocene and Pleistocene paleosols from the Canary Islands, is published by Muhs et al. (2019).[536]
  • A study on the latest Villafranchian climate and environment of the area of southern Italy, as indicated by amphibian and reptile fossil record from the Pirro Nord karstic complex, is published by Blain et al. (2019).[537]
  • A study on atmospheric gas levels before and after the shift from glacial cycles of 100 thousand years to 40-thousand-year cycles around one million years ago, as inferred from data from ice core samples from the Allan Hills Blue Ice Area (East Antarctica), is published by Yan et al. (2019).[538]
  • A study on pCO2 levels from 2.6 to 0.8 Ma is published by Da et al. (2019), who find no evidence indicating that the Mid-Pleistocene Transition was caused by the decline of pCO2.[539]
  • A study on changes in winter rainfall in the Mediterranean over the past 1.36 million years is published by Wagner et al. (2019).[540]
  • Results of stable carbon and oxygen isotope analyses of tooth enamel samples from Pleistocene mammals from the Yugong Cave and Baxian Cave (China) are presented by Sun et al. (2019), who evaluate the implications of their findings for the knowledge of Pleistocene climatic and environmental changes in South China.[541]
  • A study on Pleistocene mammal fossils from the Yai Ruak Cave (Krabi Province, Thailand), including the southernmost known record of Crocuta crocuta ultima, is published by Suraprasit et al. (2019), who evaluate the implications of these fossils for reconstructions of the environment in the area of the Malay Peninsula in the Pleistocene.[542]
  • A study on Acheulean and Middle Stone Age sites from the Eastern Desert (Sudan), preserving stone artifacts, is published by Masojć et al. (2019), who interpret these sites as evidence of green corridor or corridors across Sahara which made early hominin dispersal possible.[543]
  • Evidence from oxygen isotope data from Soreq Cave speleothems (Israel), indicative of the occurrence of summer monsoon rainfall in the Middle East during recurrent intervals of the last interglacial period (overlapping with archeological indicators of human migration), is presented by Orland et al. (2019).[544]
  • A study on the spatial and temporal distribution of ancient peatlands in the past 130,000 years is published by Treat et al. (2019).[545]
  • A study on the size of fossil rabbits from 14 late Pleistocene and Holocene archaeological sites in Portugal, and on its implications for the knowledge of temperatures and environment in the area of Portugal during the last glaciation, is published by Davis (2019).[546]
  • A study on Pleistocene small mammal remains from Stratigraphic Unit V from El Salt site (Alcoy, Spain), evaluating their implications for the knowledge of climatic conditions in the eastern Iberian Peninsula at the time of the disappearance of local Neanderthal populations during Marine Isotope Stage 3, is published by Fagoaga et al. (2019).[547]
  • A study on the sedimentary sequence from the Pilauco site in Chile, evaluating whether evidence from this site is consistent with the Younger Dryas impact hypothesis, is published by Pino et al. (2019).[548]
  • A study on variations of size of fossil murine rodents from Liang Bua (Flores, Indonesia) through time, and on their implications for reconstructions of paleoclimate and paleoenvironment of Flores, is published by Veatch et al. (2019).[549]
  • A study on human land use worldwide from 10,000 years before the present to 1850 CE, indicating that Earth was to a large extent transformed by human activity by 3000 years ago, is published by Stephens et al. (2019).[550]
  • Evidence for synchronous cyclical changes in monsoon climate, human activity and prehistoric cultural development in the area of northeast China throughout the Holocene is presented by Xu et al. (2019).[551]
  • A study on Andean plate tectonics since the late Mesozoic is published by Chen, Wu & Suppe (2019).[552]
  • A study on the course of the collision of India and Asia, as indicated by palaeomagnetic data from the Burma Terrane, is published by Westerweel et al. (2019).[553]
  • A scenario for the genesis of tropical cyclones throughout the Cenozoic is presented by Yan et al. (2019).[554]
  • A study on the extent of ice sheets in the Northern Hemisphere throughout the Quaternary is published by Batchelor et al. (2019).[555]
  • A new method of concentration of proteins from fossil specimens with high humic content and of removal of humic substances is presented by Schroeter et al. (2019).[556]

References

Шаблон:Reflist

  1. 1,0 1,1 1,2 Шаблон:Cite journal
  2. Шаблон:Cite journal
  3. Шаблон:Cite journal
  4. 4,0 4,1 Шаблон:Cite journal
  5. 5,0 5,1 5,2 5,3 Шаблон:Cite journal
  6. Шаблон:Cite journal
  7. 7,0 7,1 7,2 7,3 7,4 7,5 Шаблон:Cite journal
  8. 8,0 8,1 Шаблон:Cite journal
  9. Шаблон:Cite journal
  10. Шаблон:Cite journal
  11. Шаблон:Cite journal
  12. Шаблон:Cite journal
  13. Шаблон:Cite journal
  14. Шаблон:Cite journal
  15. Шаблон:Cite journal
  16. Шаблон:Cite journal
  17. 17,0 17,1 Шаблон:Cite journal
  18. 18,0 18,1 18,2 18,3 18,4 Шаблон:Cite journal
  19. Шаблон:Cite journal
  20. 20,0 20,1 20,2 Шаблон:Cite journal
  21. Шаблон:Cite journal
  22. Шаблон:Cite journal
  23. Шаблон:Cite journal
  24. Шаблон:Cite journal
  25. Шаблон:Cite journal
  26. Шаблон:Cite journal
  27. Шаблон:Cite journal
  28. Шаблон:Cite journal
  29. Шаблон:Cite journal
  30. Шаблон:Cite journal
  31. Шаблон:Cite journal
  32. Шаблон:Cite journal
  33. Шаблон:Cite journal
  34. Шаблон:Cite journal
  35. Шаблон:Cite journal
  36. Шаблон:Cite journal
  37. Шаблон:Cite journal
  38. Шаблон:Cite journal
  39. Шаблон:Cite journal
  40. Шаблон:Cite journal
  41. Шаблон:Cite journal
  42. Шаблон:Cite journal
  43. Шаблон:Cite journal
  44. 44,0 44,1 44,2 Шаблон:Cite journal
  45. 45,0 45,1 45,2 45,3 45,4 45,5 Шаблон:Cite journal
  46. Шаблон:Cite journal
  47. 47,0 47,1 Шаблон:Cite journal
  48. 48,00 48,01 48,02 48,03 48,04 48,05 48,06 48,07 48,08 48,09 48,10 Шаблон:Cite journal
  49. 49,0 49,1 Шаблон:Cite journal
  50. Шаблон:Cite journal
  51. Шаблон:Cite journal
  52. 52,0 52,1 Шаблон:Cite journal
  53. Шаблон:Cite journal
  54. 54,0 54,1 54,2 54,3 54,4 54,5 54,6 Шаблон:Cite journal
  55. 55,0 55,1 Шаблон:Cite journal
  56. Шаблон:Cite journal
  57. 57,0 57,1 57,2 57,3 Шаблон:Cite journal
  58. Шаблон:Cite journal
  59. Шаблон:Cite journal
  60. 60,0 60,1 Шаблон:Cite journal
  61. Шаблон:Cite journal
  62. Шаблон:Cite journal
  63. Шаблон:Cite journal
  64. Шаблон:Cite journal
  65. 65,0 65,1 65,2 65,3 Шаблон:Cite journal
  66. Шаблон:Cite journal
  67. Шаблон:Cite journal
  68. Шаблон:Cite journal
  69. 69,0 69,1 69,2 Шаблон:Cite journal
  70. 70,0 70,1 70,2 70,3 70,4 70,5 Шаблон:Cite journal
  71. Шаблон:Cite journal
  72. Шаблон:Cite journal
  73. Шаблон:Cite journal
  74. 74,0 74,1 74,2 Шаблон:Cite journal
  75. 75,0 75,1 75,2 75,3 Шаблон:Cite journal
  76. Шаблон:Cite journal
  77. 77,0 77,1 77,2 77,3 77,4 77,5 Шаблон:Cite journal
  78. Шаблон:Cite journal
  79. 79,0 79,1 Шаблон:Cite journal
  80. 80,0 80,1 Шаблон:Cite journal
  81. Шаблон:Cite journal
  82. Шаблон:Cite journal
  83. Шаблон:Cite journal
  84. Шаблон:Cite journal
  85. Шаблон:Cite journal
  86. Шаблон:Cite journal
  87. Шаблон:Cite journal
  88. Шаблон:Cite journal
  89. Шаблон:Cite journal
  90. Шаблон:Cite journal
  91. Шаблон:Cite journal
  92. Шаблон:Cite book
  93. Шаблон:Cite journal
  94. Шаблон:Cite journal
  95. Шаблон:Cite journal
  96. Шаблон:Cite journal
  97. Шаблон:Cite journal
  98. Шаблон:Cite journal
  99. Шаблон:Cite journal
  100. Шаблон:Cite journal
  101. Шаблон:Cite journal
  102. Шаблон:Cite journal
  103. 103,0 103,1 103,2 Шаблон:Cite journal
  104. 104,00 104,01 104,02 104,03 104,04 104,05 104,06 104,07 104,08 104,09 104,10 104,11 104,12 104,13 104,14 104,15 104,16 104,17 104,18 104,19 104,20 104,21 104,22 104,23 104,24 104,25 104,26 Шаблон:Cite journal
  105. Шаблон:Cite journal
  106. Шаблон:Cite journal
  107. Шаблон:Cite journal
  108. 108,0 108,1 108,2 108,3 108,4 108,5 108,6 Шаблон:Cite journal
  109. Шаблон:Cite journal
  110. 110,0 110,1 110,2 110,3 Шаблон:Cite journal
  111. Шаблон:Cite journal
  112. 112,0 112,1 112,2 Шаблон:Cite journal
  113. Шаблон:Cite journal
  114. 114,0 114,1 Шаблон:Cite book
  115. Шаблон:Cite journal
  116. 116,0 116,1 116,2 Шаблон:Cite journal
  117. Шаблон:Cite journal
  118. Шаблон:Cite journal
  119. Шаблон:Cite journal
  120. Шаблон:Cite journal
  121. 121,0 121,1 Шаблон:Cite journal
  122. Шаблон:Cite journal
  123. 123,0 123,1 123,2 123,3 Шаблон:Cite journal
  124. Шаблон:Cite journal
  125. 125,0 125,1 Шаблон:Cite journal
  126. Шаблон:Cite journal
  127. Шаблон:Cite journal
  128. Шаблон:Cite journal
  129. Шаблон:Cite journal
  130. Шаблон:Cite journal
  131. Шаблон:Cite journal
  132. Шаблон:Cite journal
  133. Шаблон:Cite journal
  134. Шаблон:Cite journal
  135. Шаблон:Cite journal
  136. Шаблон:Cite journal
  137. Шаблон:Cite journal
  138. Шаблон:Cite journal
  139. Шаблон:Cite journal
  140. Шаблон:Cite journal
  141. Шаблон:Cite journal
  142. Шаблон:Cite journal
  143. Шаблон:Cite journal
  144. Шаблон:Cite journal
  145. Шаблон:Cite journal
  146. Шаблон:Cite journal
  147. Шаблон:Cite journal
  148. Шаблон:Cite journal
  149. Шаблон:Cite journal
  150. Шаблон:Cite journal
  151. Шаблон:Cite journal
  152. 152,0 152,1 152,2 Шаблон:Cite journal
  153. Шаблон:Cite journal
  154. 154,0 154,1 Шаблон:Cite journal
  155. Шаблон:Cite journal
  156. Шаблон:Cite journal
  157. Шаблон:Cite journal
  158. Шаблон:Cite journal
  159. Шаблон:Cite journal
  160. Шаблон:Cite journal
  161. Шаблон:Cite journal
  162. Шаблон:Cite journal
  163. Шаблон:Cite journal
  164. Шаблон:Cite journal
  165. Шаблон:Cite journal
  166. Шаблон:Cite journal
  167. Шаблон:Cite journal
  168. Шаблон:Cite journal
  169. Шаблон:Cite journal
  170. Шаблон:Cite journal
  171. Шаблон:Cite journal
  172. Шаблон:Cite journal
  173. Шаблон:Cite journal
  174. Шаблон:Cite journal
  175. Шаблон:Cite journal
  176. Шаблон:Cite journal
  177. Шаблон:Cite journal
  178. Шаблон:Cite journal
  179. Шаблон:Cite journal
  180. Шаблон:Cite journal
  181. Шаблон:Cite journal
  182. Шаблон:Cite journal
  183. Шаблон:Cite journal
  184. Шаблон:Cite journal
  185. Шаблон:Cite journal
  186. Шаблон:Cite journal
  187. Шаблон:Cite journal
  188. Шаблон:Cite journal
  189. Шаблон:Cite journal
  190. Шаблон:Cite journal
  191. Шаблон:Cite journal
  192. Шаблон:Cite journal
  193. Шаблон:Cite journal
  194. Шаблон:Cite journal
  195. Шаблон:Cite journal
  196. Шаблон:Cite journal
  197. Шаблон:Cite journal
  198. Шаблон:Cite journal
  199. Шаблон:Cite journal
  200. Шаблон:Cite journal
  201. Шаблон:Cite journal
  202. Шаблон:Cite journal
  203. 203,0 203,1 Шаблон:Cite journal
  204. Шаблон:Cite journal
  205. 205,0 205,1 Шаблон:Cite journal
  206. Шаблон:Cite journal
  207. Шаблон:Cite journal
  208. Шаблон:Cite journal
  209. Шаблон:Cite journal
  210. Шаблон:Cite journal
  211. Шаблон:Cite journal
  212. Шаблон:Cite journal
  213. Шаблон:Cite journal
  214. Шаблон:Cite journal
  215. Шаблон:Cite journal
  216. Шаблон:Cite journal
  217. Шаблон:Cite journal
  218. Шаблон:Cite journal
  219. 219,0 219,1 Шаблон:Cite journal
  220. Шаблон:Cite journal
  221. Шаблон:Cite journal
  222. Шаблон:Cite journal
  223. Шаблон:Cite journal
  224. 224,0 224,1 224,2 224,3 224,4 Шаблон:Cite journal
  225. Шаблон:Cite journal
  226. 226,0 226,1 226,2 226,3 226,4 226,5 Шаблон:Cite journal
  227. 227,0 227,1 Шаблон:Cite journal
  228. Шаблон:Cite journal
  229. Шаблон:Cite journal
  230. Шаблон:Cite journal
  231. Шаблон:Cite journal
  232. Шаблон:Cite journal
  233. Шаблон:Cite journal
  234. 234,0 234,1 Шаблон:Cite journal
  235. Шаблон:Cite journal
  236. Шаблон:Cite journal
  237. Шаблон:Cite journal
  238. Шаблон:Cite journal
  239. Шаблон:Cite journal
  240. Шаблон:Cite journal
  241. 241,0 241,1 241,2 241,3 Шаблон:Cite journal
  242. Шаблон:Cite journal
  243. Шаблон:Cite journal
  244. Шаблон:Cite journal
  245. Шаблон:Cite journal
  246. 246,0 246,1 Шаблон:Cite journal
  247. 247,0 247,1 247,2 Шаблон:Cite journal
  248. Шаблон:Cite journal
  249. Шаблон:Cite journal
  250. Шаблон:Cite journal
  251. Шаблон:Cite journal
  252. Шаблон:Cite journal
  253. Шаблон:Cite journal
  254. Шаблон:Cite journal
  255. Шаблон:Cite journal
  256. Шаблон:Cite journal
  257. Шаблон:Cite journal
  258. Шаблон:Cite journal
  259. Шаблон:Cite journal
  260. Шаблон:Cite journal
  261. Шаблон:Cite journal
  262. Шаблон:Cite journal
  263. Шаблон:Cite journal
  264. Шаблон:Cite journal
  265. Шаблон:Cite journal
  266. Шаблон:Cite journal
  267. Шаблон:Cite journal
  268. Шаблон:Cite journal
  269. Шаблон:Cite journal
  270. Шаблон:Cite journal
  271. Шаблон:Cite journal
  272. Шаблон:Cite journal
  273. Шаблон:Cite journal
  274. Шаблон:Cite journal
  275. Шаблон:Cite journal
  276. Шаблон:Cite journal
  277. Шаблон:Cite journal
  278. Шаблон:Cite journal
  279. Шаблон:Cite journal
  280. Шаблон:Cite journal
  281. Шаблон:Cite journal
  282. Шаблон:Cite journal
  283. Шаблон:Cite journal
  284. Шаблон:Cite journal
  285. Шаблон:Cite journal
  286. 286,0 286,1 Шаблон:Cite journal
  287. Шаблон:Cite journal
  288. Шаблон:Cite journal
  289. Шаблон:Cite journal
  290. Шаблон:Cite journal
  291. Шаблон:Cite journal
  292. Шаблон:Cite journal
  293. Шаблон:Cite journal
  294. Шаблон:Cite journal
  295. 295,0 295,1 Шаблон:Cite journal
  296. Шаблон:Cite journal
  297. Шаблон:Cite journal
  298. Шаблон:Cite journal
  299. Шаблон:Cite journal
  300. 300,0 300,1 Шаблон:Cite journal
  301. 301,00 301,01 301,02 301,03 301,04 301,05 301,06 301,07 301,08 301,09 301,10 301,11 301,12 301,13 301,14 301,15 301,16 301,17 301,18 301,19 301,20 301,21 301,22 Шаблон:Cite journal
  302. 302,0 302,1 302,2 302,3 302,4 302,5 Шаблон:Cite journal
  303. Шаблон:Cite journal
  304. Шаблон:Cite journal
  305. Шаблон:Cite journal
  306. 306,0 306,1 Шаблон:Cite journal
  307. Шаблон:Cite journal
  308. Шаблон:Cite journal
  309. 309,0 309,1 Шаблон:Cite journal
  310. Шаблон:Cite journal
  311. Шаблон:Cite journal
  312. Шаблон:Cite journal
  313. 313,0 313,1 Шаблон:Cite journal
  314. Шаблон:Cite journal
  315. Шаблон:Cite journal
  316. Шаблон:Cite journal
  317. Шаблон:Cite journal
  318. Шаблон:Cite journal
  319. Шаблон:Cite journal
  320. Шаблон:Cite journal
  321. Шаблон:Cite journal
  322. Шаблон:Cite journal
  323. Шаблон:Cite journal
  324. Шаблон:Cite journal
  325. Шаблон:Cite journal
  326. Шаблон:Cite journal
  327. Шаблон:Cite journal
  328. Шаблон:Cite journal
  329. Шаблон:Cite journal
  330. Шаблон:Cite journal
  331. Шаблон:Cite journal
  332. Шаблон:Cite journal
  333. Шаблон:Cite journal
  334. Шаблон:Cite journal
  335. Шаблон:Cite journal
  336. Шаблон:Cite journal
  337. Шаблон:Cite journal
  338. Шаблон:Cite journal
  339. Шаблон:Cite journal
  340. Шаблон:Cite journal
  341. Шаблон:Cite journal
  342. Шаблон:Cite journal
  343. Шаблон:Cite journal
  344. Шаблон:Cite journal
  345. Шаблон:Cite journal
  346. Шаблон:Cite journal
  347. Шаблон:Cite journal
  348. Шаблон:Cite journal
  349. Шаблон:Cite journal
  350. Шаблон:Cite journal
  351. Шаблон:Cite journal
  352. Шаблон:Cite news
  353. Шаблон:Cite journal
  354. Шаблон:Cite journal
  355. Шаблон:Cite journal
  356. Шаблон:Cite journal
  357. Шаблон:Cite journal
  358. Шаблон:Cite journal
  359. Шаблон:Cite journal
  360. Шаблон:Cite journal
  361. Шаблон:Cite journal
  362. Шаблон:Cite journal
  363. Шаблон:Cite journal
  364. Шаблон:Cite journal
  365. Шаблон:Cite journal
  366. Шаблон:Cite journal
  367. Шаблон:Cite journal
  368. Шаблон:Cite journal
  369. Шаблон:Cite journal
  370. Шаблон:Cite journal
  371. Шаблон:Cite journal
  372. Шаблон:Cite journal
  373. Шаблон:Cite journal
  374. Шаблон:Cite journal
  375. Шаблон:Cite journal
  376. Шаблон:Cite journal
  377. Шаблон:Cite journal Alt URL
  378. Шаблон:Cite journal
  379. Шаблон:Cite journal
  380. Шаблон:Cite journal
  381. Шаблон:Cite journal
  382. Шаблон:Cite journal
  383. Шаблон:Cite journal
  384. Шаблон:Cite journal
  385. Шаблон:Cite journal
  386. Шаблон:Cite journal
  387. Шаблон:Cite journal
  388. Шаблон:Cite journal
  389. Шаблон:Cite journal
  390. Шаблон:Cite journal
  391. Шаблон:Cite journal
  392. Шаблон:Cite journal
  393. Шаблон:Cite journal
  394. Шаблон:Cite journal
  395. Шаблон:Cite journal
  396. Шаблон:Cite journal
  397. Шаблон:Cite journal
  398. Шаблон:Cite journal
  399. Шаблон:Cite journal
  400. Шаблон:Cite journal
  401. Шаблон:Cite journal
  402. Шаблон:Cite journal
  403. Шаблон:Cite journal
  404. Шаблон:Cite journal
  405. Шаблон:Cite journal
  406. Шаблон:Cite journal
  407. Шаблон:Cite journal
  408. Шаблон:Cite journal
  409. Шаблон:Cite journal
  410. Шаблон:Cite journal
  411. Шаблон:Cite journal
  412. Шаблон:Cite journal
  413. Шаблон:Cite journal
  414. Шаблон:Cite journal
  415. Шаблон:Cite journal
  416. Шаблон:Cite journal
  417. Шаблон:Cite journal
  418. Шаблон:Cite journal
  419. Шаблон:Cite journal
  420. Шаблон:Cite journal
  421. Шаблон:Cite journal
  422. Шаблон:Cite journal
  423. Шаблон:Cite journal
  424. Шаблон:Cite journal
  425. Шаблон:Cite journal
  426. Шаблон:Cite journal
  427. Шаблон:Cite journal
  428. Шаблон:Cite journal
  429. Шаблон:Cite journal
  430. Шаблон:Cite journal
  431. Шаблон:Cite journal
  432. Шаблон:Cite journal
  433. Шаблон:Cite journal
  434. Шаблон:Cite journal
  435. Шаблон:Cite journal
  436. Шаблон:Cite journal
  437. Шаблон:Cite journal
  438. Шаблон:Cite journal
  439. Шаблон:Cite journal
  440. Шаблон:Cite journal
  441. Шаблон:Cite journal
  442. Шаблон:Cite journal
  443. Шаблон:Cite journal
  444. Шаблон:Cite journal
  445. Шаблон:Cite journal
  446. Шаблон:Cite journal
  447. Шаблон:Cite journal
  448. Шаблон:Cite journal
  449. Шаблон:Cite journal
  450. Шаблон:Cite journal
  451. Шаблон:Cite journal
  452. Шаблон:Cite journal
  453. Шаблон:Cite journal
  454. Шаблон:Cite journal
  455. Шаблон:Cite journal
  456. Шаблон:Cite journal
  457. Шаблон:Cite journal
  458. Шаблон:Cite journal
  459. Шаблон:Cite journal
  460. Шаблон:Cite journal
  461. Шаблон:Cite journal
  462. Шаблон:Cite journal
  463. Шаблон:Cite journal
  464. Шаблон:Cite journal
  465. Шаблон:Cite journal
  466. Шаблон:Cite journal
  467. Шаблон:Cite journal
  468. Шаблон:Cite journal
  469. Шаблон:Cite journal
  470. Шаблон:Cite journal
  471. Шаблон:Cite journal
  472. Шаблон:Cite journal
  473. Шаблон:Cite journal
  474. Шаблон:Cite journal
  475. Шаблон:Cite journal
  476. Шаблон:Cite journal
  477. Шаблон:Cite journal
  478. Шаблон:Cite journal
  479. Шаблон:Cite journal
  480. Шаблон:Cite journal
  481. Шаблон:Cite journal
  482. Шаблон:Cite journal
  483. Шаблон:Cite journal
  484. Шаблон:Cite journal
  485. Шаблон:Cite journal
  486. Шаблон:Cite journal
  487. Шаблон:Cite journal
  488. Шаблон:Cite journal
  489. Шаблон:Cite journal
  490. Шаблон:Cite journal
  491. Шаблон:Cite journal
  492. Шаблон:Cite journal
  493. Шаблон:Cite journal
  494. Шаблон:Cite journal
  495. Шаблон:Cite journal
  496. Шаблон:Cite journal
  497. Шаблон:Cite journal
  498. Шаблон:Cite journal
  499. Шаблон:Cite journal
  500. Шаблон:Cite journal
  501. Шаблон:Cite journal
  502. Шаблон:Cite journal
  503. Шаблон:Cite journal
  504. Шаблон:Cite journal
  505. Шаблон:Cite journal
  506. Шаблон:Cite journal
  507. Шаблон:Cite journal
  508. Шаблон:Cite journal
  509. Шаблон:Cite journal
  510. Шаблон:Cite journal
  511. Шаблон:Cite journal
  512. Шаблон:Cite journal
  513. Шаблон:Cite journal
  514. Шаблон:Cite journal
  515. Шаблон:Cite journal
  516. Шаблон:Cite journal
  517. Шаблон:Cite journal
  518. Шаблон:Cite journal
  519. Шаблон:Cite journal
  520. Шаблон:Cite journal
  521. Шаблон:Cite journal
  522. Шаблон:Cite journal
  523. Шаблон:Cite journal
  524. Шаблон:Cite journal
  525. Шаблон:Cite journal
  526. Шаблон:Cite journal
  527. Шаблон:Cite journal
  528. Шаблон:Cite journal
  529. Шаблон:Cite journal
  530. Шаблон:Cite journal
  531. Шаблон:Cite journal
  532. Шаблон:Cite journal
  533. Шаблон:Cite journal
  534. Шаблон:Cite journal
  535. Шаблон:Cite journal
  536. Шаблон:Cite journal
  537. Шаблон:Cite journal
  538. Шаблон:Cite journal
  539. Шаблон:Cite journal
  540. Шаблон:Cite journal
  541. Шаблон:Cite journal
  542. Шаблон:Cite journal
  543. Шаблон:Cite journal
  544. Шаблон:Cite journal
  545. Шаблон:Cite journal
  546. Шаблон:Cite journal
  547. Шаблон:Cite journal
  548. Шаблон:Cite journal
  549. Шаблон:Cite journal
  550. Шаблон:Cite journal
  551. Шаблон:Cite journal
  552. Шаблон:Cite journal
  553. Шаблон:Cite journal
  554. Шаблон:Cite journal
  555. Шаблон:Cite journal
  556. Шаблон:Cite journal