Английская Википедия:2 21 polytope

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:Up 2 21 t0 E6.svg
221
Шаблон:CDD
Файл:Up 2 21 t1 E6.svg
Rectified 221
Шаблон:CDD
Файл:Up 1 22 t0 E6.svg
(122)
Шаблон:CDD
Файл:Up 2 21 t2 E6.svg
Birectified 221
(Rectified 122)
Шаблон:CDD
orthogonal projections in E6 Coxeter plane

In 6-dimensional geometry, the 221 polytope is a uniform 6-polytope, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure.[1] It is also called the Schläfli polytope.

Its Coxeter symbol is 221, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of one of the 2-node sequences. He also studied[2] its connection with the 27 lines on the cubic surface, which are naturally in correspondence with the vertices of 221.

The rectified 221 is constructed by points at the mid-edges of the 221. The birectified 221 is constructed by points at the triangle face centers of the 221, and is the same as the rectified 122.

These polytopes are a part of family of 39 convex uniform polytopes in 6-dimensions, made of uniform 5-polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: Шаблон:CDD.

2_21 polytope

221 polytope
Type Uniform 6-polytope
Family k21 polytope
Schläfli symbol {3,3,32,1}
Coxeter symbol 221
Coxeter-Dynkin diagram Шаблон:CDD or Шаблон:CDD
5-faces 99 total:
27 211Файл:5-orthoplex.svg
72 {34}Файл:5-simplex t0.svg
4-faces 648:
432 {33}Файл:4-simplex t0.svg
216 {33}Файл:4-simplex t0.svg
Cells 1080 {3,3}Файл:3-simplex t0.svg
Faces 720 {3}Файл:2-simplex t0.svg
Edges 216
Vertices 27
Vertex figure 121 (5-demicube)
Petrie polygon Dodecagon
Coxeter group E6, [32,2,1], order 51840
Properties convex

The 221 has 27 vertices, and 99 facets: 27 5-orthoplexes and 72 5-simplices. Its vertex figure is a 5-demicube.

For visualization this 6-dimensional polytope is often displayed in a special skewed orthographic projection direction that fits its 27 vertices within a 12-gonal regular polygon (called a Petrie polygon). Its 216 edges are drawn between 2 rings of 12 vertices, and 3 vertices projected into the center. Higher elements (faces, cells, etc.) can also be extracted and drawn on this projection.

The Schläfli graph is the 1-skeleton of this polytope.

Alternate names

  • E. L. Elte named it V27 (for its 27 vertices) in his 1912 listing of semiregular polytopes.[3]
  • Icosihepta-heptacontidi-peton - 27-72 facetted polypeton (acronym jak) (Jonathan Bowers)[4]

Coordinates

The 27 vertices can be expressed in 8-space as an edge-figure of the 421 polytope:

(-2, 0, 0, 0,-2, 0, 0, 0), 
( 0,-2, 0, 0,-2, 0, 0, 0), 
( 0, 0,-2, 0,-2, 0, 0, 0), 
( 0, 0, 0,-2,-2, 0, 0, 0), 
( 0, 0, 0, 0,-2, 0, 0,-2), 
( 0, 0, 0, 0, 0,-2,-2, 0)
( 2, 0, 0, 0,-2, 0, 0, 0), 
( 0, 2, 0, 0,-2, 0, 0, 0), 
( 0, 0, 2, 0,-2, 0, 0, 0), 
( 0, 0, 0, 2,-2, 0, 0, 0), 
( 0, 0, 0, 0,-2, 0, 0, 2)
(-1,-1,-1,-1,-1,-1,-1,-1),
(-1,-1,-1, 1,-1,-1,-1, 1), 
(-1,-1, 1,-1,-1,-1,-1, 1), 
(-1,-1, 1, 1,-1,-1,-1,-1), 
(-1, 1,-1,-1,-1,-1,-1, 1), 
(-1, 1,-1, 1,-1,-1,-1,-1), 
(-1, 1, 1,-1,-1,-1,-1,-1), 
( 1,-1,-1,-1,-1,-1,-1, 1), 
( 1,-1, 1,-1,-1,-1,-1,-1), 
( 1,-1,-1, 1,-1,-1,-1,-1), 
( 1, 1,-1,-1,-1,-1,-1,-1), 
(-1, 1, 1, 1,-1,-1,-1, 1),
( 1,-1, 1, 1,-1,-1,-1, 1),
( 1, 1,-1, 1,-1,-1,-1, 1),
( 1, 1, 1,-1,-1,-1,-1, 1),
( 1, 1, 1, 1,-1,-1,-1,-1)

Construction

Its construction is based on the E6 group.

The facet information can be extracted from its Coxeter-Dynkin diagram, Шаблон:CDD.

Removing the node on the short branch leaves the 5-simplex, Шаблон:CDD.

Removing the node on the end of the 2-length branch leaves the 5-orthoplex in its alternated form: (211), Шаблон:CDD.

Every simplex facet touches a 5-orthoplex facet, while alternate facets of the orthoplex touch either a simplex or another orthoplex.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes 5-demicube (121 polytope), Шаблон:CDD. The edge-figure is the vertex figure of the vertex figure, a rectified 5-cell, (021 polytope), Шаблон:CDD.

Seen in a configuration matrix, the element counts can be derived from the Coxeter group orders.[5]

E6 Шаблон:CDD k-face fk f0 f1 f2 f3 f4 f5 k-figure notes
D5 Шаблон:CDD ( ) f0 27 16 80 160 80 40 16 10 h{4,3,3,3} E6/D5 = 51840/1920 = 27
A4A1 Шаблон:CDD { } f1 2 216 10 30 20 10 5 5 r{3,3,3} E6/A4A1 = 51840/120/2 = 216
A2A2A1 Шаблон:CDD {3} f2 3 3 720 6 6 3 2 3 {3}x{ } E6/A2A2A1 = 51840/6/6/2 = 720
A3A1 Шаблон:CDD {3,3} f3 4 6 4 1080 2 1 1 2 { }v( ) E6/A3A1 = 51840/24/2 = 1080
A4 Шаблон:CDD {3,3,3} f4 5 10 10 5 432 * 1 1 { } E6/A4 = 51840/120 = 432
A4A1 Шаблон:CDD 5 10 10 5 * 216 0 2 E6/A4A1 = 51840/120/2 = 216
A5 Шаблон:CDD {3,3,3,3} f5 6 15 20 15 6 0 72 * ( ) E6/A5 = 51840/720 = 72
D5 Шаблон:CDD {3,3,3,4} 10 40 80 80 16 16 * 27 E6/D5 = 51840/1920 = 27

Images

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow. The number of vertices by color are given in parentheses.

Coxeter plane orthographic projections
E6
[12]
D5
[8]
D4 / A2
[6]
B6
[12/2]
Файл:Up 2 21 t0 E6.svg
(1,3)
Файл:Up 2 21 t0 D5.svg
(1,3)
Файл:Up 2 21 t0 D4.svg
(3,9)
Файл:Up 2 21 t0 B6.svg
(1,3)
A5
[6]
A4
[5]
A3 / D3
[4]
Файл:Up 2 21 t0 A5.svg
(1,3)
Файл:Up 2 21 t0 A4.svg
(1,2)
Файл:Up 2 21 t0 D3.svg
(1,4,7)

Geometric folding

The 221 is related to the 24-cell by a geometric folding of the E6/F4 Coxeter-Dynkin diagrams. This can be seen in the Coxeter plane projections. The 24 vertices of the 24-cell are projected in the same two rings as seen in the 221.

E6
Шаблон:Dynkin
F4
Шаблон:Dynkin2
Файл:E6 graph.svg
221
Шаблон:CDD
Файл:24-cell t3 F4.svg
24-cell
Шаблон:CDD

This polytope can tessellate Euclidean 6-space, forming the 222 honeycomb with this Coxeter-Dynkin diagram: Шаблон:CDD.

Related complex polyhedra

The regular complex polygon 3{3}3{3}3, Шаблон:CDD, in <math>\mathbb{C}^2</math> has a real representation as the 221 polytope, Шаблон:CDD, in 4-dimensional space. It is called a Hessian polyhedron after Edmund Hess. It has 27 vertices, 72 3-edges, and 27 3{3}3 faces. Its complex reflection group is 3[3]3[3]3, order 648.

Related polytopes

The 221 is fourth in a dimensional series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope. Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes. Шаблон:K 21 polytopes

The 221 polytope is fourth in dimensional series 2k2. Шаблон:2 k1 polytopes

The 221 polytope is second in dimensional series 22k. Шаблон:2 2k polytopes

Rectified 2_21 polytope

Rectified 221 polytope
Type Uniform 6-polytope
Schläfli symbol t1{3,3,32,1}
Coxeter symbol t1(221)
Coxeter-Dynkin diagram Шаблон:CDD or Шаблон:CDD
5-faces 126 total:

72 t1{34} Файл:5-simplex t1.svg
27 t1{33,4} Файл:5-cube t3.svg
27 t1{3,32,1} Файл:5-demicube t0 D5.svg

4-faces 1350
Cells 4320
Faces 5040
Edges 2160
Vertices 216
Vertex figure rectified 5-cell prism
Coxeter group E6, [32,2,1], order 51840
Properties convex

The rectified 221 has 216 vertices, and 126 facets: 72 rectified 5-simplices, and 27 rectified 5-orthoplexes and 27 5-demicubes . Its vertex figure is a rectified 5-cell prism.

Alternate names

  • Rectified icosihepta-heptacontidi-peton as a rectified 27-72 facetted polypeton (acronym rojak) (Jonathan Bowers)[6]

Construction

Its construction is based on the E6 group and information can be extracted from the ringed Coxeter-Dynkin diagram representing this polytope: Шаблон:CDD.

Removing the ring on the short branch leaves the rectified 5-simplex, Шаблон:CDD.

Removing the ring on the end of the other 2-length branch leaves the rectified 5-orthoplex in its alternated form: t1(211), Шаблон:CDD.

Removing the ring on the end of the same 2-length branch leaves the 5-demicube: (121), Шаблон:CDD.

The vertex figure is determined by removing the ringed ring and ringing the neighboring ring. This makes rectified 5-cell prism, t1{3,3,3}x{}, Шаблон:CDD.

Images

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow.

Coxeter plane orthographic projections
E6
[12]
D5
[8]
D4 / A2
[6]
B6
[12/2]
Файл:Up 2 21 t1 E6.svg Файл:Up 2 21 t1 D5.svg Файл:Up 2 21 t1 D4.svg Файл:Up 2 21 t1 B6.svg
A5
[6]
A4
[5]
A3 / D3
[4]
Файл:Up 2 21 t1 A5.svg Файл:Up 2 21 t1 A4.svg Файл:Up 2 21 t1 D3.svg

Truncated 2_21 polytope

Truncated 221 polytope
Type Uniform 6-polytope
Schläfli symbol t{3,3,32,1}
Coxeter symbol t(221)
Coxeter-Dynkin diagram Шаблон:CDD or Шаблон:CDD
5-faces 72+27+27
4-faces 432+216+432+270
Cells 1080+2160+1080
Faces 720+4320
Edges 216+2160
Vertices 432
Vertex figure ( ) v r{3,3,3}
Coxeter group E6, [32,2,1], order 51840
Properties convex

The truncated 221 has 432 vertices, 5040 edges, 4320 faces, 1350 cells, and 126 4-faces. Its vertex figure is a rectified 5-cell pyramid.

Images

Vertices are colored by their multiplicity in this projection, in progressive order: red, orange, yellow, green, cyan, blue, purple.

Coxeter plane orthographic projections
E6
[12]
D5
[8]
D4 / A2
[6]
B6
[12/2]
Файл:Up 2 21 t01 E6.svg Файл:Up 2 21 t01 D5.svg Файл:Up 2 21 t01 D4.svg Файл:Up 2 21 t01 B6.svg
A5
[6]
A4
[5]
A3 / D3
[4]
Файл:Up 2 21 t01 A5.svg Файл:Up 2 21 t01 A4.svg Файл:Up 2 21 t01 D3.svg

See also

Notes

Шаблон:Reflist

References

  • T. Gosset: On the Regular and Semi-Regular Figures in Space of n Dimensions, Messenger of Mathematics, Macmillan, 1900
  • Шаблон:Citation
  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, Шаблон:ISBN [1]
    • (Paper 17) Coxeter, The Evolution of Coxeter-Dynkin diagrams, [Nieuw Archief voor Wiskunde 9 (1991) 233-248] See figure 1: (p. 232) (Node-edge graph of polytope)
  • Шаблон:KlitzingPolytopes x3o3o3o3o *c3o - jak, o3x3o3o3o *c3o - rojak

Шаблон:Polytopes

  1. Gosset, 1900
  2. Шаблон:Cite journal
  3. Elte, 1912
  4. Klitzing, (x3o3o3o3o *c3o - jak)
  5. Coxeter, Regular Polytopes, 11.8 Gossett figures in six, seven, and eight dimensions, p. 202-203
  6. Klitzing, (o3x3o3o3o *c3o - rojak)