Английская Википедия:3-3 duoprism

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

3-3 duoprism
Файл:3-3 duoprism.png
Schlegel diagram
Type Uniform duoprism
Schläfli symbol {3}×{3} = {3}2
Coxeter diagram Шаблон:CDD
Cells 6 triangular prisms
Faces 9 squares,
6 triangles
Edges 18
Vertices 9
Vertex figure Файл:33-duoprism verf.png
Tetragonal disphenoid
Symmetry Шаблон:Brackets = [6,2+,6], order 72
Dual 3-3 duopyramid
Properties convex, vertex-uniform, facet-transitive

In the geometry of 4 dimensions, the 3-3 duoprism or triangular duoprism is a four-dimensional convex polytope. It can be constructed as the Cartesian product of two triangles and is the simplest of an infinite family of four-dimensional polytopes constructed as Cartesian products of two polygons, the duoprisms.

It has 9 vertices, 18 edges, 15 faces (9 squares, and 6 triangles), in 6 triangular prism cells. It has Coxeter diagram Шаблон:CDD, and symmetry Шаблон:Brackets, order 72. Its vertices and edges form a <math>3\times 3</math> rook's graph.

Hypervolume

The hypervolume of a uniform 3-3 duoprism, with edge length a, is <math>V_4 = {3\over 16}a^4</math>. This is the square of the area of an equilateral triangle, <math>A = {\sqrt3\over 4}a^2</math>.

Graph

The graph of vertices and edges of the 3-3 duoprism has 9 vertices and 18 edges. Like the Berlekamp–van Lint–Seidel graph and the unknown solution to Conway's 99-graph problem, every edge is part of a unique triangle and every non-adjacent pair of vertices is the diagonal of a unique square. It is a toroidal graph, a locally linear graph, a strongly regular graph with parameters (9,4,1,2), the <math>3\times 3</math> rook's graph, and the Paley graph of order 9.[1] This graph is also the Cayley graph of the group <math>G=\langle a,b:a^3=b^3=1,\ ab=ba\rangle\simeq C_3\times C_3</math> with generating set <math>S=\{a,a^2,b,b^2\}</math>.

Images

Orthogonal projections
Файл:3-3 duoprism ortho-dih3.png Файл:3-3 duoprism-isotoxal.svg Файл:3-3 duoprism ortho-Dih3.png Файл:3-3 duoprism ortho square.png
Файл:3,3 duoprism net.png Файл:Triangular Duoprism YW and ZW Rotations.gif
Net 3D perspective projection with 2 different rotations

Symmetry

In 5-dimensions, some uniform 5-polytopes have 3-3 duoprism vertex figures, some with unequal edge-lengths and therefore lower symmetry:

Symmetry Шаблон:Brackets, order 72 [3,2], order 12
Coxeter
diagram
Шаблон:CDD
Шаблон:CDD
Шаблон:CDD Шаблон:CDD Шаблон:CDD
Schlegel
diagram
Файл:Birectified hexateron verf.png Файл:Runcinated 5-simplex verf.png Файл:Runcinated penteract verf.png Файл:Runcinated pentacross verf.png
Name t2α5 t03α5 t03γ5 t03β5

The birectified 16-cell honeycomb also has a 3-3 duoprism vertex figure. There are three constructions for the honeycomb with two lower symmetries.

Symmetry [3,2,3], order 36 [3,2], order 12 [3], order 6
Coxeter
diagram
Шаблон:CDD Шаблон:CDD Шаблон:CDD
Skew
orthogonal
projection
Файл:Birectified 16-cell honeycomb verf.png Файл:Birectified 16-cell honeycomb verf2.png Файл:Birectified 16-cell honeycomb verf3.png

Related complex polygons

The regular complex polytope 3{4}2, Шаблон:CDD, in <math>\mathbb{C}^2</math> has a real representation as a 3-3 duoprism in 4-dimensional space. 3{4}2 has 9 vertices, and 6 3-edges. Its symmetry is 3[4]2, order 18. It also has a lower symmetry construction, Шаблон:CDD, or 3{}×3{}, with symmetry 3[2]3, order 9. This is the symmetry if the red and blue 3-edges are considered distinct.[2]

Файл:Complex polygon 3-4-2-stereographic2.png
Perspective projection
Файл:3-generalized-2-cube.svg
Orthogonal projection with coinciding central vertices
Файл:3-generalized-2-cube skew.svg
Orthogonal projection, offset view to avoid overlapping elements.

Related polytopes

Шаблон:K 22 polytopes

3-3 duopyramid

3-3 duopyramid
Type Uniform dual duopyramid
Schläfli symbol {3}+{3} = 2{3}
Coxeter diagram Шаблон:CDD
Cells 9 tetragonal disphenoids
Faces 18 isosceles triangles
Edges 15 (9+6)
Vertices 6 (3+3)
Symmetry Шаблон:Brackets = [6,2+,6], order 72
Dual 3-3 duoprism
Properties convex, vertex-uniform, facet-transitive

The dual of a 3-3 duoprism is called a 3-3 duopyramid or triangular duopyramid. It has 9 tetragonal disphenoid cells, 18 triangular faces, 15 edges, and 6 vertices.

It can be seen in orthogonal projection as a 6-gon circle of vertices, and edges connecting all pairs, just like a 5-simplex seen in projection.

Файл:3-3 duopyramid ortho.png
orthogonal projection

Related complex polygon

The regular complex polygon 2{4}3 has 6 vertices in <math>\mathbb{C}^2</math> with a real representation in <math>\mathbb{R}^4</math> matching the same vertex arrangement of the 3-3 duopyramid. It has 9 2-edges corresponding to the connecting edges of the 3-3 duopyramid, while the 6 edges connecting the two triangles are not included. It can be seen in a hexagonal projection with 3 sets of colored edges. This arrangement of vertices and edges makes a complete bipartite graph with each vertex from one triangle is connected to every vertex on the other. It is also called a Thomsen graph or 4-cage.[3]

Файл:Complex polygon 2-4-3-bipartite graph.png
The 2{4}3 with 6 vertices in blue and red connected by 9 2-edges as a complete bipartite graph.
Файл:Complex polygon 2-4-3.png
It has 3 sets of 3 edges, seen here with colors.

See also

Notes

Шаблон:Reflist

References

External links

  1. Шаблон:Citation
  2. Coxeter, H. S. M.; Regular Complex Polytopes, Cambridge University Press, (1974).
  3. Regular Complex Polytopes, p.110, p.114