Английская Википедия:34 equal temperament
In musical theory, 34 equal temperament, also referred to as 34-TET, 34-EDO or 34-ET, is the tempered tuning derived by dividing the octave into 34 equal-sized steps (equal frequency ratios). Шаблон:Audio Each step represents a frequency ratio of Шаблон:Radic, or 35.29 cents Шаблон:Audio.
History and use
Unlike divisions of the octave into 19, 31 or 53 steps, which can be considered as being derived from ancient Greek intervals (the greater and lesser diesis and the syntonic comma), division into 34 steps did not arise 'naturally' out of older music theory, although Cyriakus Schneegass proposed a meantone system with 34 divisions based in effect on half a chromatic semitone (the difference between a major third and a minor third, 25:24 or 70.67 cents).Шаблон:Citation needed Wider interest in the tuning was not seen until modern times, when the computer made possible a systematic search of all possible equal temperaments. While Barbour discusses it,[1] the first recognition of its potential importance appears to be in an article published in 1979 by the Dutch theorist Dirk de Klerk.Шаблон:Citation needed The luthier Larry Hanson had an electric guitar refretted from 12 to 34 and persuaded American guitarist Neil Haverstick to take it up.Шаблон:Citation needed
As compared with 31-et, 34-et reduces the combined mistuning from the theoretically ideal just thirds, fifths and sixths from 11.9 to 7.9 cents. Its fifths and sixths are markedly better, and its thirds only slightly further from the theoretical ideal of the 5:4 ratio. Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B, thus making a distinction between major tones, ratio 9:8 and minor tones, ratio 10:9. This can be regarded either as a resource or as a problem, making modulation in the contemporary Western sense more complex. As the number of divisions of the octave is even, the exact halving of the octave (600 cents) appears, as in 12-et. Unlike 31-et, 34 does not give an approximation to the harmonic seventh, ratio 7:4.
Interval size
The following table outlines some of the intervals of this tuning system and their match to various ratios in the harmonic series.
interval name | size (steps) | size (cents) | midi | just ratio | just (cents) | midi | error |
octave | 34 | 1200 | 2:1 | 1200 | 0 | ||
perfect fifth | 20 | 705.88 | Шаблон:Audio | 3:2 | 701.95 | Шаблон:Audio | +Шаблон:03.93 |
septendecimal tritone | 17 | 600.00 | Шаблон:Audio | 17:12 | 603.00 | −Шаблон:03.00 | |
lesser septimal tritone | 17 | 600.00 | 7:5 | 582.51 | Шаблон:Audio | +17.49 | |
tridecimal narrow tritone | 16 | 564.71 | Шаблон:Audio | 18:13 | 563.38 | Шаблон:Audio | +Шаблон:01.32 |
11:8 wide fourth | 16 | 564.71 | 11:8Шаблон:0 | 551.32 | Шаблон:Audio | +13.39 | |
undecimal wide fourth | 15 | 529.41 | Шаблон:Audio | 15:11 | 536.95 | Шаблон:Audio | −Шаблон:07.54 |
perfect fourth | 14 | 494.12 | Шаблон:Audio | 4:3 | 498.04 | Шаблон:Audio | −Шаблон:03.93 |
tridecimal major third | 13 | 458.82 | 13:10 | 454.21 | Шаблон:Audio | +Шаблон:04.61 | |
septimal major third | 12 | 423.53 | Шаблон:Audio | 9:7 | 435.08 | Шаблон:Audio | −11.55 |
undecimal major third | 12 | 423.53 | 14:11 | 417.51 | Шаблон:Audio | +Шаблон:06.02 | |
major third | 11 | 388.24 | Шаблон:Audio | 5:4 | 386.31 | Шаблон:Audio | +Шаблон:01.92 |
tridecimal neutral third | 10 | 352.94 | Шаблон:Audio | 16:13 | 359.47 | Шаблон:Audio | −Шаблон:06.53 |
undecimal neutral third | 10 | 352.94 | 11:9Шаблон:0 | 347.41 | Шаблон:Audio | +Шаблон:05.53 | |
minor third | Шаблон:09 | 317.65 | Шаблон:Audio | 6:5 | 315.64 | Шаблон:Audio | +Шаблон:02.01 |
tridecimal minor third | Шаблон:08 | 282.35 | Шаблон:Audio | 13:11 | 289.21 | Шаблон:Audio | −Шаблон:06.86 |
septimal minor third | Шаблон:08 | 282.35 | 7:6 | 266.87 | Шаблон:Audio | +15.48 | |
tridecimal semimajor second | Шаблон:07 | 247.06 | Шаблон:Audio | 15:13 | 247.74 | Шаблон:Audio | −Шаблон:00.68 |
septimal whole tone | Шаблон:07 | 247.06 | 8:7 | 231.17 | Шаблон:Audio | +15.88 | |
whole tone, major tone | Шаблон:06 | 211.76 | Шаблон:Audio | 9:8 | 203.91 | Шаблон:Audio | +Шаблон:07.85 |
whole tone, minor tone | Шаблон:05 | 176.47 | Шаблон:Audio | 10:9Шаблон:0 | 182.40 | Шаблон:Audio | −Шаблон:05.93 |
neutral second, greater undecimal | Шаблон:05 | 176.47 | 11:10 | 165.00 | Шаблон:Audio | +11.47 | |
neutral second, lesser undecimal | Шаблон:04 | 141.18 | Шаблон:Audio | 12:11 | 150.64 | Шаблон:Audio | −Шаблон:09.46 |
greater tridecimal Шаблон:2/3-tone | Шаблон:04 | 141.18 | 13:12 | 138.57 | Шаблон:Audio | +Шаблон:02.60 | |
lesser tridecimal Шаблон:2/3-tone | Шаблон:04 | 141.18 | 14:13 | 128.30 | Шаблон:Audio | +12.88 | |
15:14 semitone | Шаблон:03 | 105.88 | Шаблон:Audio | 15:14 | 119.44 | Шаблон:Audio | −13.56 |
diatonic semitone | Шаблон:03 | 105.88 | 16:15 | 111.73 | Шаблон:Audio | −Шаблон:05.85 | |
17th harmonic | Шаблон:03 | 105.88 | 17:16 | 104.96 | Шаблон:Audio | +Шаблон:00.93 | |
21:20 semitone | Шаблон:02 | Шаблон:070.59 | Шаблон:Audio | 21:20 | Шаблон:084.47 | Шаблон:Audio | −13.88 |
chromatic semitone | Шаблон:02 | Шаблон:070.59 | 25:24 | Шаблон:070.67 | Шаблон:Audio | −Шаблон:00.08 | |
28:27 semitone | Шаблон:02 | Шаблон:070.59 | 28:27 | Шаблон:062.96 | Шаблон:Audio | +Шаблон:07.63 | |
septimal sixth-tone | Шаблон:01 | Шаблон:035.29 | Шаблон:Audio | 50:49 | Шаблон:034.98 | Шаблон:Audio | +Шаблон:00.31 |
Scale diagram
The following are 15 of the 34 notes in the scale:
Interval (cents) | 106 | 106 | 70 | 35 | 70 | 106 | 106 | 106 | 70 | 35 | 70 | 106 | 106 | 106 | ||||||||||||||||
Note name | C | CШаблон:Music/DШаблон:Music | D | DШаблон:Music | EШаблон:Music | E | F | FШаблон:Music/GШаблон:Music | G | GШаблон:Music | AШаблон:Music | A | AШаблон:Music/BШаблон:Music | B | C | |||||||||||||||
Note (cents) | 0 | 106 | 212 | 282 | 318 | 388 | 494 | 600 | 706 | 776 | 812 | 882 | 988 | 1094 | 1200 |
The remaining notes can easily be added.
References
- J. Murray Barbour, Tuning and Temperament, Michigan State College Press, 1951.
External links
- Dirk de Klerk. "Equal Temperament", Acta Musicologica, Vol. 51, Fasc. 1 (Jan. - Jun., 1979), pp. 140-150.
- Stickman: Neil Haverstick - Neil Haverstick is a composer and guitarist who uses microtonal tunings, especially 19, 31 and 34 tone equal temperament.
Шаблон:Microtonal music Шаблон:Musical tuning
- ↑ Tuning and Temperament, Michigan State College Press, 1951