Английская Википедия:67P/Churyumov–Gerasimenko

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Use American English Шаблон:Use dmy dates Шаблон:Infobox planet

67P/Churyumov–Gerasimenko (abbreviated as 67P or 67P/C–G) is a Jupiter-family comet,[1] originally from the Kuiper belt,[2] with a current orbital period of 6.45 years,[3] a rotation period of approximately 12.4 hours[4] and a maximum velocity of Шаблон:Convert.[5] Churyumov–Gerasimenko is approximately Шаблон:Convert at its longest and widest dimensions.[6] It was first observed on photographic plates in 1969 by Soviet astronomers Klim Ivanovych Churyumov and Svetlana Ivanovna Gerasimenko, after whom it is named.Шаблон:Efn It most recently came to perihelion (closest approach to the Sun) on 2 November 2021,[7][8][9] and will next come to perihelion on 9 April 2028.[10]

Churyumov–Gerasimenko was the destination of the European Space Agency's Rosetta mission, launched on 2 March 2004.[11][12][13] Rosetta rendezvoused with Churyumov–Gerasimenko on 6 August 2014[14][15] and entered orbit on 10 September 2014.[16] RosettaШаблон:'s lander, Philae, landed on the comet's surface on 12 November 2014, becoming the first spacecraft to land on a comet nucleus.[17][18][19] On 30 September 2016, the Rosetta spacecraft ended its mission by landing on the comet in its Ma'at region.[20][21]

Discovery

Churyumov–Gerasimenko was discovered in 1969 by Klim Ivanovich Churyumov of the Kyiv University's Astronomical Observatory,[22] who examined a photograph that had been exposed for comet Comas Solà by Svetlana Ivanovna Gerasimenko on 11 September 1969 at the Alma-Ata Astrophysical Institute, near Alma-Ata (now Almaty), the then-capital city of Kazakh Soviet Socialist Republic, Soviet Union. Churyumov found a cometary object near the edge of the plate, but assumed that this was comet Comas Solà.[23]

After returning to his home institute in Kyiv, Churyumov examined all the photographic plates more closely. On 22 October, about a month after the photograph was taken, he discovered that the object could not be Comas Solà, because it was about 1.8 degrees off the expected position. Further scrutiny produced a faint image of Comas Solà at its expected position on the plate, thus proving the other object to be a different body.[23]

Shape

Файл:Comet 67P-Churyumov-Gerasimenko.stl
3D model of 67P by ESA (click to rotate)

The comet consists of two lobes connected by a narrower neck, with the larger lobe measuring about Шаблон:Convert and the smaller one about Шаблон:Convert.[24] With each orbit the comet loses matter, as gas and dust are evaporated away by the Sun. It is estimated that currently a layer with an average thickness of about Шаблон:Convert is lost per orbit.[25] The comet has a mass of approximately 10 billion tonnes.[26]

The two-lobe shape of the comet is the result of a gentle, low-velocity collision of two objects, and is called a contact binary. The "terraces", layers of the interior of the comet that have been exposed by partial stripping of outer layers during its existence, are oriented in different directions in the two lobes, indicating that two objects fused to form Churyumov–Gerasimenko.[27][28]

Surface

A black and white short animation of dust on the surface
Dust and cosmic rays on the surface of the comet in 2016, with stars moving in the background. Filmed by Rosetta's OSIRIS instrument.
Pristine view of 67P
Pristine view (B) of 67P after removal of noise and outliers from the surface using advanced outlier removal techniques. (C) shows the flakes when treated as outliers in the original raw image (A)

There are 26 distinct regions on Churyumov–Gerasimenko, with each named after an Egyptian deity; regions on the large lobe are named after gods, whereas those on the small lobe are named after goddesses. 19 regions were defined in the northern hemisphere prior to equinox.[29][30] Later, when the southern hemisphere became illuminated, seven more regions were identified using the same naming convention.[31][32]

Region Terrain Region Terrain Region Terrain
Ma'at Dust covered Ash Dust covered Babi Dust covered
Seth Pitted and brittle material Hatmehit Large-scale depression Nut Large-scale depression
Aten Large-scale depression Hapi Smooth Imhotep Smooth
Anubis Smooth Maftet Rock-like Bastet Rock-like
Serqet Rock-like Hathor Rock-like Anuket Rock-like
Khepry Rock-like Aker Rock-like Atum Rock-like
Apis Rock-like Khonsu Rock-like Bes Rock-like
Anhur Rock-like, rather friable Geb Rock-like Sobek Rock-like
Neith Rock-like Wosret Rock-like

Gates

Features described as gates, twin prominences on the surface so named for their appearance,Шаблон:Clarify were named after deceased members of the Rosetta team.[33]

Name Named after
C. Alexander Gate Claudia Alexander
A. Coradini Gate Angioletta Coradini

Surface changes

During RosettaШаблон:'s lifetime, many changes were observed on the comet's surface, particularly when the comet was close to perihelion.[34][35][36] These changes included evolving patterns of circular shapes in smooth terrains that at some point grew in size by a few metres per day.[37][38] A fracture in the neck region was also observed to grow in size; boulders tens of metres wide were displaced, sometimes travelling more than 100 metres; and patches of the ground were removed to expose new features. A number of collapsing cliffs have also been observed. One notable example in December 2015 was captured by RosettaШаблон:'s NAVCAM as a bright patch of light shining from the comet. Rosetta scientists determined that a large cliff had collapsed, making it the first landslide on a comet known to be associated with an outburst of activity.[39][40] An apparent outburst of the comet was observed on 14 November 2021.[41] According to the researchers, "At the time of the outburst discovery with ZTF, the comet was 1.23 au from the Sun and 0.42 au from the Earth. The comet's last perihelion passage was on 2021 Nov 2.".[41]

Cheops boulder

Cheops is the largest boulder on the surface of the comet, measuring up to 45 meters. It is located in the comet's larger lobe. It was named for the pyramid in Giza because its shape is similar to that of a pyramid.[42][43][44]

Orbit and rotation

Perihelion distance
at different epochs
[9]
Epoch Perihelion
(AU)
1821 2.44
1882 2.94
1956 2.74
1963 1.28
2021 1.21
2101 1.35
2223 ≈0.8[45]
Файл:Comet 67P orbit perihelion 2015.png
The orbit of 67P/Churyumov–Gerasimenko moves from just inside the orbit of Mars to just outside the orbit of Jupiter, seen here at perihelion in August 2015
Файл:NavCam Comet 67P animation 20140806 (cropped).gif
This animation consists of 86 images acquired by RosettaШаблон:'s NavCam as it approached 67P in August 2014

Like the other comets of the Jupiter family, Churyumov–Gerasimenko probably originated in the Kuiper belt and was ejected towards the interior of the Solar System, where later encounters with Jupiter successively changed its orbit. These interactions will continue until the comet is eventually thrown out of the Solar System or collides with the Sun or a planet.

On 4 February 1959, a close encounter with Jupiter of Шаблон:Convert[3] moved Churyumov–Gerasimenko's perihelion inward from Шаблон:Convert to Шаблон:Convert, where it basically remains today.[9] In November 2220 the comet will pass about Шаблон:Convert from Jupiter[46] which will move perihelion inwards to about Шаблон:Convert from the Sun.[45]

Before Churyumov–Gerasimenko's perihelion passage in 2009, its rotational period was 12.76 hours. During this perihelion passage, it decreased to 12.4 hours, which likely happened because of sublimation-induced torque.[4]

2015 perihelion

Шаблон:As of, Churyumov–Gerasimenko's nucleus had an apparent magnitude of roughly 20.[8] It came to perihelion on 13 August 2015.[47][7] From December 2014 until September 2015, it had an elongation less than 45 degrees from the Sun.[48] On 10 February 2015, it went through solar conjunction when it was 5 degrees from the Sun and was Шаблон:Convert from Earth.[48] It crossed the celestial equator on 5 May 2015 and became easiest to see from the Northern Hemisphere.[48] Even right after perihelion when it was in the constellation of Gemini, it only brightened to about apparent magnitude 12, and required a telescope to be seen.[7] Шаблон:As of, the comet had a total magnitude of about 20.[8]

2021 perihelion

Файл:67P 2021-11-11 image ZTF-sso-616-zr-fov-13arcmin.png
The comet on 11 November 2021 by ZTF.

The 2021 apparition marked the closest approach to Earth since 1982.[3] The comet reached perihelion on 2 November 2021[7] and the closest approach to Earth was on November 12, 2021, at 00:50 UTC, at a distance of 38 million miles (61 million km).[49] The comet brightened to an apparent magnitude of 9, meaning it was visible with amateur telescopes.[49][50] Two outbursts were observed during the apparition, on 2021 October 29.940 and November 17.864 UTC, −3.12 days and +15.81 days respectively from the perihelion date. During the first outburst the comet brightened by 0.26 ± 0.03 mag in the outburst, with a 27% increase in the effective geometric cross-section and total outburst dust mass of Шаблон:Val. The second outburst caused a brightening of 0.49 ± 0.08 mag with effective geometric cross-section and total outburst dust mass 2.5 times larger than the first event.[51]

Exploration

Rosetta mission

Шаблон:Main Шаблон:See also The Rosetta mission was the first mission to include an orbiter that accompanied a comet for several years, as well as a lander that collected close-up data from the comet's surface. The mission launched in 2004, arrived at comet 67P in 2014, and concluded with a touchdown on the comet's surface in 2016.

Advance work

Шаблон:Multiple image As preparation for the Rosetta mission, Hubble Space Telescope pictures taken on 12 March 2003 were closely analysed. An overall 3D model was constructed and computer-generated images were created.[52]

On 25 April 2012, the most detailed observations until that time were taken with the 2-metre Faulkes Telescope by N. Howes, G. Sostero and E. Guido while it was at its aphelion.Шаблон:Citation needed

On 6 June 2014, water vapor was detected being released at a rate of roughly Шаблон:Convert when Rosetta was Шаблон:Convert from Churyumov–Gerasimenko and Шаблон:Convert from the Sun.[53][54] On 14 July 2014, images taken by Rosetta showed that its nucleus is irregular in shape with two distinct lobes.[55] The size of the nucleus was estimated to be Шаблон:Convert.[56] Two explanations for its shape were proposed at the time: that it was a contact binary, or that its shape may have resulted from asymmetric erosion due to ice sublimating from its surface to leave behind its lobed shape.[15][13] By September 2015, mission scientists had determined that the contact binary hypothesis was unambiguously correct.[57][28]

Rendezvous and orbit

Шаблон:Multiple image Beginning in May 2014, RosettaШаблон:'s velocity was reduced by Шаблон:Convert with a series of thruster firings.[13][58] Ground controllers rendezvoused Rosetta with Churyumov–Gerasimenko on 6 August 2014.[14][15] This was done by reducing RosettaШаблон:'s relative velocity to Шаблон:Convert. Rosetta entered orbit on 10 September, at about Шаблон:Convert from the nucleus.[14][15][59]

Landing

Шаблон:Further Descent of a small lander occurred on 12 November 2014. Philae is a Шаблон:Convert robotic probe that set down on the surface with landing gear.[13][60] The landing site has been christened Agilkia in honor of Agilkia Island, where the temples of Philae Island were relocated after the construction of the Aswan Dam flooded the island.[61] The acceleration due to gravity on the surface of Churyumov–Gerasimenko has been estimated for simulation purposes at 10−3 m/sШаблон:Sup,[62] or about 1/10000 of that on Earth.

Because of its low relative mass, landing on the comet involved certain technical considerations to keep Philae anchored. The probe contains an array of mechanisms designed to manage Churyumov–Gerasimenko's low gravity, including a cold gas thruster, harpoons, landing-leg-mounted ice screws, and a flywheel to keep it oriented during its descent.[63][64][65] During the event, the thruster and the harpoons failed to operate, and the ice screws did not gain a grip. The lander bounced twice and only came to rest when it made contact with the surface for the third time,[66] two hours after first contact.[67]

Contact with Philae was lost on 15 November 2014 because of dropping battery power. The European Space Operations Centre briefly reestablished communications on 14 June 2015 and reported a healthy spacecraft but communications were lost again soon after.[68] On 2 September 2016, Philae was located in photographs taken by the Rosetta orbiter. It had come to rest in a crack with only its body and two legs visible. While the discovery solves the question of the lander's disposition, it also allows project scientists to properly contextualise the data it returned from the comet's surface.[69]

Physical properties

Файл:Crescent Comet 67P.jpg
False-colour image of the comet outgassing, 15 April 2015

The composition of water vapor from Churyumov–Gerasimenko, as determined by the Rosetta spacecraft, is substantially different from that found on Earth. The ratio of deuterium to hydrogen in the water from the comet was determined to be three times that found for terrestrial water. This makes it unlikely that water found on Earth came from comets such as Churyumov–Gerasimenko.[2][70][71] The water vapor is also mixed with significant amount of formaldehyde (0.5 wt%) and methanol (0.4 wt%), these concentrations falling within common range for Solar system comets.[72] On 22 January 2015, NASA reported that, between June and August 2014, the comet released increasing amounts of water vapor, up to tenfold as much.[73] On 23 January 2015, the journal Science published a special issue of scientific studies related to the comet.[74]

Measurements carried out before PhilaeШаблон:'s batteries failed indicate that the dust layer could be as much as Шаблон:Convert thick. Beneath that is hard ice, or a mixture of ice and dust. Porosity appears to increase toward the center of the comet.[75]

The nucleus of Churyumov–Gerasimenko was found to have no magnetic field of its own after measurements were taken during PhilaeШаблон:'s descent and landing by its ROMAP instrument and RosettaШаблон:'s RPC-MAG instrument. This suggests that magnetism may not have played a role in the early formation of the Solar System, as had previously been hypothesized.[76][77]

The ALICE spectrograph on Rosetta determined that electrons (within Шаблон:Convert above the comet nucleus) produced from photoionization of water molecules by solar radiation, and not photons from the Sun as thought earlier, are responsible for the degradation of water and carbon dioxide molecules released from the comet nucleus into its coma.[78][79] Also, active pits, related to sinkhole collapses and possibly associated with outbursts are present on the comet.[80][81]

Measurements by the COSAC and Ptolemy instruments on the PhilaeШаблон:'s lander revealed sixteen organic compounds, four of which were seen for the first time on a comet, including acetamide, acetone, methyl isocyanate and propionaldehyde.[82][83][84] Astrobiologists Chandra Wickramasinghe and Max Wallis stated that some of the physical features detected on the comet's surface by Rosetta and Philae, such as its organic-rich crust, could be explained by the presence of extraterrestrial microorganisms.[85][86] Rosetta program scientists dismissed the claim as "pure speculation".[87] Carbon-rich compounds are common in the Solar System. Neither Rosetta nor Philae is equipped to search for direct evidence of organisms.[85] The only amino acid detected thus far on the comet is glycine, along with precursor molecules methylamine and ethylamine.[88]

Solid organic compounds were also found in the dust particles emitted by the comet; the carbon in this organic material is bound in "very large macromolecular compounds", analogous to the insoluble organic matter in carbonaceous chondrite meteorites. Scientists think that the observed cometary carbonaceous solid matter could have the same origin as the meteoritic insoluble organic matter, but suffered less modification before or after being incorporated into the comet.[89]

One of the most outstanding discoveries of the mission so far is the detection of large amounts of free molecular oxygen (Шаблон:Chem2) gas surrounding the comet. Current solar system models suggest the molecular oxygen should have disappeared by the time 67P was created, about 4.6 billion years ago in a violent and hot process that would have caused the oxygen to react with hydrogen and form water.[90][91] Molecular oxygen has never before been detected in cometary comas. In situ measurements indicate that the Шаблон:Chem2/Шаблон:Chem2 ratio is isotropic in the coma and does not change systematically with heliocentric distance, suggesting that primordial Шаблон:Chem2 was incorporated into the nucleus during the comet's formation.[90] This interpretation was challenged by the discovery that Шаблон:Chem2 may be produced on the surface of the comet in water molecule collisions with silicates and other oxygen-containing materials.[92] Detection of molecular nitrogen (Шаблон:Chem2) in the comet suggests that its cometary grains formed in low-temperature conditions below Шаблон:Convert.[93]

On 3 July 2018, researchers hypothesized that molecular oxygen may not be made on the surface of comet 67P in sufficient quantity, thus deepening the mystery of its origin.[94][95]

Future missions

CAESAR was a proposed sample-return mission aimed at returning to 67P/Churyumov–Gerasimenko, capturing regolith from the surface, and returning it to Earth.[96][97] This mission was competing in NASA's New Frontiers mission 4 selection process, and was one of two finalists in the program.[98] In June 2019, it was passed over in favor of Dragonfly.[99][100]

Gallery

See also

Notes

Шаблон:Notelist

References

Шаблон:Reflist

Further reading

External links

Шаблон:Sisterlinks

Шаблон:PeriodicComets Navigator Шаблон:Rosetta mission Шаблон:Comets Шаблон:2014 in space Шаблон:Portal bar Шаблон:Authority control

  1. Ошибка цитирования Неверный тег <ref>; для сносок yfernandez не указан текст
  2. 2,0 2,1 Ошибка цитирования Неверный тег <ref>; для сносок AP-20141210-SB не указан текст
  3. 3,0 3,1 3,2 Ошибка цитирования Неверный тег <ref>; для сносок jpldata не указан текст
  4. 4,0 4,1 Ошибка цитирования Неверный тег <ref>; для сносок Mottola2014 не указан текст
  5. Ошибка цитирования Неверный тег <ref>; для сносок ESA-faq не указан текст
  6. Ошибка цитирования Неверный тег <ref>; для сносок 67P_size не указан текст
  7. 7,0 7,1 7,2 7,3 Ошибка цитирования Неверный тег <ref>; для сносок Yoshida не указан текст
  8. 8,0 8,1 8,2 Ошибка цитирования Неверный тег <ref>; для сносок MPC не указан текст
  9. 9,0 9,1 9,2 Ошибка цитирования Неверный тег <ref>; для сносок Kinoshita не указан текст
  10. Ошибка цитирования Неверный тег <ref>; для сносок Horizons2028 не указан текст
  11. Ошибка цитирования Неверный тег <ref>; для сносок Krolikowska2003 не указан текст
  12. Ошибка цитирования Неверный тег <ref>; для сносок NASA-201401017 не указан текст
  13. 13,0 13,1 13,2 13,3 Ошибка цитирования Неверный тег <ref>; для сносок NYT-20140805 не указан текст
  14. 14,0 14,1 14,2 Ошибка цитирования Неверный тег <ref>; для сносок Fischer2014-08-06 не указан текст
  15. 15,0 15,1 15,2 15,3 Ошибка цитирования Неверный тег <ref>; для сносок Bauer2014 не указан текст
  16. Ошибка цитирования Неверный тег <ref>; для сносок esa20140910 не указан текст
  17. Ошибка цитирования Неверный тег <ref>; для сносок NASA-20141112-DCA не указан текст
  18. Ошибка цитирования Неверный тег <ref>; для сносок NYT-20141112-KC не указан текст
  19. Ошибка цитирования Неверный тег <ref>; для сносок bbcland не указан текст
  20. Ошибка цитирования Неверный тег <ref>; для сносок newsci20160930 не указан текст
  21. Ошибка цитирования Неверный тег <ref>; для сносок space20160930 не указан текст
  22. Ошибка цитирования Неверный тег <ref>; для сносок iau61 не указан текст
  23. 23,0 23,1 Ошибка цитирования Неверный тег <ref>; для сносок Kronk не указан текст
  24. Ошибка цитирования Неверный тег <ref>; для сносок esa20150122 не указан текст
  25. Ошибка цитирования Неверный тег <ref>; для сносок Bertaux2015 не указан текст
  26. Ошибка цитирования Неверный тег <ref>; для сносок mass density 2016 не указан текст
  27. Ошибка цитирования Неверный тег <ref>; для сносок natgeo20150928 не указан текст
  28. 28,0 28,1 Ошибка цитирования Неверный тег <ref>; для сносок Massironi2015 не указан текст
  29. Ошибка цитирования Неверный тег <ref>; для сносок ElMaarry2015 не указан текст
  30. Ошибка цитирования Неверный тег <ref>; для сносок space20150719 не указан текст
  31. Ошибка цитирования Неверный тег <ref>; для сносок ElMaarry2016 не указан текст
  32. Ошибка цитирования Неверный тег <ref>; для сносок esa20160224 не указан текст
  33. Ошибка цитирования Неверный тег <ref>; для сносок esablog20150928 не указан текст
  34. Ошибка цитирования Неверный тег <ref>; для сносок ElMaarry2017 не указан текст
  35. Ошибка цитирования Неверный тег <ref>; для сносок esa20170321 не указан текст
  36. Ошибка цитирования Неверный тег <ref>; для сносок nasa20170321 не указан текст
  37. Ошибка цитирования Неверный тег <ref>; для сносок Groussin2015 не указан текст
  38. Ошибка цитирования Неверный тег <ref>; для сносок esa20150918 не указан текст
  39. Ошибка цитирования Неверный тег <ref>; для сносок Pajola2017 не указан текст
  40. Ошибка цитирования Неверный тег <ref>; для сносок wapo20170321 не указан текст
  41. 41,0 41,1 Шаблон:Cite news
  42. Шаблон:Cite news
  43. Шаблон:Cite web
  44. Шаблон:Cite web
  45. 45,0 45,1 Ошибка цитирования Неверный тег <ref>; для сносок Horizons2223 не указан текст
  46. Ошибка цитирования Неверный тег <ref>; для сносок Dunn не указан текст
  47. Ошибка цитирования Неверный тег <ref>; для сносок AP-20150813 не указан текст
  48. 48,0 48,1 48,2 Ошибка цитирования Неверный тег <ref>; для сносок MPC-emp не указан текст
  49. 49,0 49,1 Шаблон:Cite web
  50. Шаблон:Cite web
  51. Шаблон:Cite journal Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence.
  52. Ошибка цитирования Неверный тег <ref>; для сносок STScI-2003-26 не указан текст
  53. Ошибка цитирования Неверный тег <ref>; для сносок blog140623 не указан текст
  54. Ошибка цитирования Неверный тег <ref>; для сносок NASA-20140630 не указан текст
  55. Ошибка цитирования Неверный тег <ref>; для сносок astronomy20140717 не указан текст
  56. Ошибка цитирования Неверный тег <ref>; для сносок skytel20140717 не указан текст
  57. Ошибка цитирования Неверный тег <ref>; для сносок esa20150928 не указан текст
  58. Ошибка цитирования Неверный тег <ref>; для сносок csm20140804 не указан текст
  59. Ошибка цитирования Неверный тег <ref>; для сносок Lakdawalla2014-08-15 не указан текст
  60. Ошибка цитирования Неверный тег <ref>; для сносок NYT-20141110-KC не указан текст
  61. Ошибка цитирования Неверный тег <ref>; для сносок bbcnews20141104 не указан текст
  62. Ошибка цитирования Неверный тег <ref>; для сносок Hilchenbach2004 не указан текст
  63. Ошибка цитирования Неверный тег <ref>; для сносок cnn20141113 не указан текст
  64. Ошибка цитирования Неверный тег <ref>; для сносок register20141112 не указан текст
  65. Ошибка цитирования Неверный тег <ref>; для сносок discovery20141112 не указан текст
  66. Ошибка цитирования Неверный тег <ref>; для сносок NASA-20141113-DCA не указан текст
  67. Ошибка цитирования Неверный тег <ref>; для сносок skytel20141112 не указан текст
  68. Ошибка цитирования Неверный тег <ref>; для сносок nature20150614 не указан текст
  69. Ошибка цитирования Неверный тег <ref>; для сносок skytel20160905 не указан текст
  70. Ошибка цитирования Неверный тег <ref>; для сносок NASA-20141210-DCA не указан текст
  71. Ошибка цитирования Неверный тег <ref>; для сносок NYT-20141210-KC не указан текст
  72. Шаблон:Cite journal
  73. Ошибка цитирования Неверный тег <ref>; для сносок NASA-20150122 не указан текст
  74. Ошибка цитирования Неверный тег <ref>; для сносок SCI-20150123 не указан текст
  75. Ошибка цитирования Неверный тег <ref>; для сносок esa20141218 не указан текст
  76. Ошибка цитирования Неверный тег <ref>; для сносок esa20150414 не указан текст
  77. Ошибка цитирования Неверный тег <ref>; для сносок nature20150414 не указан текст
  78. Ошибка цитирования Неверный тег <ref>; для сносок NASA-20150602 не указан текст
  79. Ошибка цитирования Неверный тег <ref>; для сносок AA-20150602 не указан текст
  80. Ошибка цитирования Неверный тег <ref>; для сносок NAT-20150702 не указан текст
  81. Ошибка цитирования Неверный тег <ref>; для сносок AP-20150701 не указан текст
  82. Ошибка цитирования Неверный тег <ref>; для сносок wapo20150730 не указан текст
  83. Ошибка цитирования Неверный тег <ref>; для сносок esa20150730 не указан текст
  84. Ошибка цитирования Неверный тег <ref>; для сносок SCI-20150731 не указан текст
  85. 85,0 85,1 Ошибка цитирования Неверный тег <ref>; для сносок TG-20150705 не указан текст
  86. Ошибка цитирования Неверный тег <ref>; для сносок SN-20150706 не указан текст
  87. Ошибка цитирования Неверный тег <ref>; для сносок TT-20150706 не указан текст
  88. Ошибка цитирования Неверный тег <ref>; для сносок Altwegg 2016 не указан текст
  89. Ошибка цитирования Неверный тег <ref>; для сносок Fray 2016 не указан текст
  90. 90,0 90,1 Ошибка цитирования Неверный тег <ref>; для сносок Bieler 2015 не указан текст
  91. Ошибка цитирования Неверный тег <ref>; для сносок Howel 2015 не указан текст
  92. Ошибка цитирования Неверный тег <ref>; для сносок Yao 2017 не указан текст
  93. Ошибка цитирования Неверный тег <ref>; для сносок Rubin2015 не указан текст
  94. Ошибка цитирования Неверный тег <ref>; для сносок Heritier2018 не указан текст
  95. Ошибка цитирования Неверный тег <ref>; для сносок imperial20180703 не указан текст
  96. Ошибка цитирования Неверный тег <ref>; для сносок nasa20171220 не указан текст
  97. Ошибка цитирования Неверный тег <ref>; для сносок nytimes20171219 не указан текст
  98. Ошибка цитирования Неверный тег <ref>; для сносок ibtimes20171220 не указан текст
  99. Ошибка цитирования Неверный тег <ref>; для сносок nyt20190627 не указан текст
  100. Ошибка цитирования Неверный тег <ref>; для сносок spnews20190627 не указан текст
  101. Ошибка цитирования Неверный тег <ref>; для сносок esobs20140908 не указан текст
  102. Шаблон:Cite web