Английская Википедия:9K35 Strela-10

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Infobox weapon

The 9K35 Strela-10 (Шаблон:Lang-ru; Шаблон:Lang-en) is a Soviet highly mobile, short-range surface-to-air missile system. It is visually aimed, and utilizes optical/infrared-guidance. The system is primarily intended to engage low-altitude threats, such as helicopters. "9K35" is its GRAU designation; its NATO reporting name is SA-13 "Gopher".

Development

The 9K35 is the successor of the 9K31 Strela-1 and can also use the Strela-1's missiles in place of the 9M37.

Development of the 9K37 Strela-10SV system was initiated July 24, 1969. The decision to begin the development of a new non-all-weather system was taken despite the simultaneous development of an all-weather hybrid gun/missile system 9K22 "Tunguska" mainly as an economical measure. It was also seen as advantageous to have a system capable of fast reaction times and immunity to heavy radio-frequency jamming.[1]

Rather than being mounted on an amphibious but lightly armoured BRDM chassis like the 9K31, the 9K35 is mounted on a more mobile tracked, modified MT-LB, with more room for equipment and missile reloads. Provision for amphibious capability is provided in some variants in the form of polyurethane-filled floats.

The Strela-10SV system and its 9M37 missile were tested in Donguzkom range from 1973 to 1974, but the results were disappointing: the system was found deficient in terms of missile probability of kill, vehicle reliability, among other things. Acceptance to service was thus delayed until May 16, 1976, by which time improvements had been introduced to the system.[1]

Development of the system continued throughout the years through Strela-10M, −10M2 and −10M3 variants introducing among other things improved radio communications and provision for better integration to the Soviet integrated air defence system air picture data.[1] Also improved missiles (9M37M and 9M333) have been developed and by September 2007 the 9K35M3-K Kolchan variant, mounted on a BTR-60 wheeled chassis, was displayed for the first time at the Moscow Air Show MAKS 2007.[2]

The Russian Armed Forces will receive 72 advanced mobile "night" short-range anti-aircraft missile complexes "Strela-10M4″ by 2016. In 2014, the Russian Airborne Troops received the first batch of 18 "Strela-10M4″ vehicles. Modernization of equipment extends the "life" of an air defense system for 3–5 years.[3]

The Strela-10M is expected to be replaced by the Sosna anti-aircraft missile system. The system is based on the MT-LB chassis consisting of 12 Sosna-R 9M337 beam rider missiles with a range of 10 km and altitude of 5 km.[4]

Description

Associated systems and vehicles

The 9K35 is a SAM system with electro-optical guidance. It has the capability to use radars for target acquisition and range. Some vehicles have a pintle-mounted PKT 7.62 mm machine gun in front of the forward hatch for local protection. Other vehicles have been seen with additional support railings for the system on the rear deck. The following is a list of associated equipment:

  • 9A34M2, 9A34M3-K: launcher vehicle with 9S86 (NATO designation "SNAP SHOT") range only radar located between the two pairs of missile canisters on the transporter erector launcher and radar (TELAR) (maximum radar range is 450 to 10,000 m).
  • 9A35M2, 9A35M3-K: launcher vehicle with 9S16 (NATO designation "Flat Box-B") passive radar detection system that gives a 360° azimuth and minimum 40° elevation coverage
  • 9F624 and 9F624M training simulator
  • 9S482M7 Control Post.
  • 9U111: a 1,950 kg trailer-mounted 12 kW generator unit, designed to feed power to up to four 9A35M2, 9A35M3-K or 9A34M2, 9A34M3-K launcher vehicles at a distance of up to 30 m by cable while conducting maintenance or training operations.
  • 9V839M: system checkout vehicle
  • 9V915M, 9V915M-1: technical maintenance vehicle
  • MT-LBU with 9S80 (NATO designation "DOG EAR") F/G-band target acquisition radar (maximum range 80 km (50 miles))
  • Ranzhir-M 9S737М (GRAU designation 9S737); is a mobile command center for a mixed grouping of air defense forces, such as the Tor, Tunguska, Strela-10, and Igla.[5]

Missiles

Шаблон:Infobox weapon

Файл:9M37 surface-to-air missile of Strela-10 system.jpg
The 9M37 guided missile

The Strela-10 system was originally designed to use the 9M37 missile as its primary weapon, but its launch system was designed to be also backwards compatible with the 9M31M missile of the earlier 9K31 Strela-1.

Each 9M37 missile is 2,200 mm (7.2 ft) long, weighs 40 kg (88 pounds) and carries a 3.5 kg (7–15 pound) warhead. The maximum speed of the missile is near Mach 2, engagement range is from 800 to 5000 m (0.3–3 miles) and engagement altitude is between 10 and 3500 m (33-11,500 ft). (The ranges define the zone of target intercept, minimum and maximum launch distances are longer for approaching and shorter for receding targets, depending on the target's speed, altitude and flight direction.)

Four missiles are mounted on the turret in boxes, ready to launch, and eight more are carried inside the vehicle as reloads. Reloading takes around 3 minutes.

The 9M37 was quickly replaced with a slightly improved 9M37M (main improvement was in more efficient autopilot system for missile flight path control), and later the more significantly upgraded 9M333, which introduced:[1]

  • heavier warhead of improved expanding-rod design and larger HE content
  • new proximity fuzing with 8-ray laser to improve probability of fuzing on near misses of very small targets such as cruise missiles or UAVs
  • triple-channel guidance system for more robust countermeasure rejection
  • improved engine to provide similar performance despite the slight increase in missile length and weight.

All missiles—9M31M, 9M37, 9M37M and 9M333—are equipped with optical homing heads utilizing reticle-based photocontrast and/or infrared homing. 9M333 is said to have particularly good countermeasures resistance due to its triple-channel homing head, while the photocontrast channel of 9M37/9M37M is described as back-up method to the IR channel.[1]

All main variants—Strela-10SV, Strela-10M, Strela-10M2 and Strela-10M3—can use all aforementioned missile types.[6]

The main characteristics of the missiles are listed in the table below, based on source number,[6] unless otherwise noted. For comparison purposes data for nearest western equivalent, the somewhat larger and heavier MIM-72 Chaparral, is also provided.

As the photocontrast channel provides effective head-on engagement ability, firing range against an approaching target can be considerably longer than the maximum ranges listed above, likewise maximum firing range would be considerably less than the maximum range of target destruction against a receding target. Definition of range and effective ceiling for MIM-72 is unknown and the figures are therefore not directly comparable.

System 9K31 Strela-1M 9K35 Strela-10 9K35M Strela-10M3-K 9K35M Strela-10M4 MIM-72A Chaparral MIM-72G Chaparral
Missile 9M31M 9M37 9M37M 9M333 MIM-72A MIM-72G
year of
introduction
1971[7] 1976 1981 1989 1967[8] 1982/1990(*)
diameter [mm] 120 120 120 120 127[9] 127[9]
length [mm] 1803 2190 2190 2 230 2900[9] 2900[9]
weight [kg] 32 40 40 42 86[9] 86[9]
warhead (HE) [kg] 2.6 3 3 5 11[9] 12.6[9]
fuze impact and proximity proximity + impact proximity + impact 8-ray laser proximity + impact impact + radar proximity impact + directional doppler radar proximity
seeker head AM-modulated photocontrast (uncooled PbS detector element[7]) Two-channel:
1) AM-modulated photocontrast (cooled[1] PbS),
2) FM-modulated uncooled[1] IR
Two-channel:
1) AM-modulated photocontrast (cooled[1] PbS),
2) FM-modulated uncooled[1] IR
Three-channel:
1) photocontrast,
2) IR,
3) IRCCM channel
cooled IR of AIM-9D (limited[10]/no[9] forward hemisphere capability) two-channel:
1) cooled all-aspect IR,
2) UV (forward-hemisphere / long-range homing + IRCCM)[9]
Min. range of target destruction [km] 0.8 0.8 0.8 0.8 ? ?
Max. range of target destruction [km] 4.2 5.0 5.0 5.0 6..9 (sources vary) 6..9 (sources vary)
Min. intercept altitude [m] 30 25 25 10 15[9] 15[9]
Max. intercept altitude [m] 3000 3500 3500 3500 3000[9] 3000[9]
speed [m/s] 420[7] 517 517 517 515 (Mach 1.5)[9] 515 (Mach 1.5)[9]
target max speed [m/s]: approaching / receding ? 415/310 415/310 415/310 ? ?

(*) Contract for production of MIM-72G by retrofitting new components was awarded in late 1982, with all missile in US service upgraded by the late 1980s. New production of MIM-72G missiles started in 1990.

Combat use

Angolan Civil War

On February 20, 1988, 31-year-old Major Edward Richard Every from 1 Squadron SAAF, was killed in action when his Mirage F1AZ (serial 245) was shot down by a Cuban Strela-10 surface-to-air missile in Cuatir (near Menongue) while on an attack mission over Southern Angola.[11]

Operation Desert Storm

Iraq had several operational Strela-10 systems at the beginning of the 1991 operation to liberate Kuwait from Iraqi occupation, most if not all of which were organized as part of the battlefield air defence systems of the Republican Guard divisions.

During the operation, 27 coalition aircraft are believed to have been hit by Iraqi IR-homing SAMs, resulting in 14 losses. Some of the losses were shot down on the spot, while others, such as OA-10A 77-0197, returned to base only to be lost in a crash landing.[12] Others landed safely, but were written off as total losses.

At least two losses are believed to have been due to Strela-10s: On February 15 an A-10A (78-0722) of 353rd TFS/354th TFW was hit by a SAM believed to be a Strela-10, some 100 km north west of Kuwait City, while attacking Republican Guard targets. Pilot Lt Robert Sweet ejected and was made a prisoner of war. While attempting to protect Sweet on the ground, his wingman Steven Phyllis flying A-10A 79-0130 was also hit by what is believed to have been a Strela-10. Phyllis was killed in the incident.[12]

Kosovo War

During NATO bombing campaign against FR Yugoslavia, Strela-10 managed to hit an A-10 of United States Air Force on 11 May 1999.[13]

Syrian Civil War

On April 14, 2018, American, British, and French forces launched a barrage of 105 air-to-surface and cruise missiles targeting eight sites in Syria. According to a Russian source, five Strela-10 missiles launched in response destroyed three incoming missiles,[14] However, the American Department of Defense stated in a daily press briefing that no Allied missiles were shot down.[15]

2020 Nagorno-Karabakh conflict

The Armenian Air Defense employed Strela-10 missile systems during the 2020 Nagorno-Karabakh conflict. During the opening days of the war, several videos released by the Azerbaijani military showed several Armenian 9K33 Osa and Strela-10 vehicles destroyed by Bayraktar TB2 armed drones.[16][17]

Russian Invasion of Ukraine 2022

A Strela-10 from the Ukrainian Armed Forces was recorded running over a civilian car in the opening weeks of the war. The driver of the car was uninjured.[18] A Russian Strela-10M guarding Snake Island was destroyed by a Bayraktar TB2 on 30 April 2022.[19] A Ukrainian Strela-10M system was reported destroyed by the Russian Air Force near Lisichansk on 17 June 2022. [20] A Russian source claimed in September 2023 that Russia uses the 9M333 missile in Ukraine.[21]

Wagner Group rebellion

A video of a Strela-10 targeting and almost hit a Russian Army Ka-52 helicopter near Voronetzh has been published.[22] Another Ka-52 was able to decoy a missile fired from a Wagner operated 9K35 Strela-10 by use of flares. [23]

Operators

Файл:9K35 operators.png
Map of 9K35 operators in blue with former operators in red

Current operators

Former operators

Gallery

See also

References

Шаблон:Reflist

External links

Шаблон:Commons

Шаблон:Russian and Soviet missiles Шаблон:PostWWIISovietAFVS

  1. 1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 Шаблон:Cite web
  2. Ошибка цитирования Неверный тег <ref>; для сносок Janes не указан текст
  3. Шаблон:Cite web
  4. Russian Sosna air defense missile system unveiled at Army-2018 Шаблон:Webarchive. Army Recognition. 21 August 2018.
  5. Шаблон:Cite web
  6. 6,0 6,1 Шаблон:Cite web
  7. 7,0 7,1 7,2 Шаблон:Cite web
  8. Шаблон:Cite web
  9. 9,00 9,01 9,02 9,03 9,04 9,05 9,06 9,07 9,08 9,09 9,10 9,11 9,12 9,13 9,14 9,15 Шаблон:Cite web
  10. Шаблон:Cite web
  11. Шаблон:Cite book
  12. 12,0 12,1 Шаблон:Cite web
  13. Шаблон:Cite web
  14. Шаблон:Cite web
  15. Шаблон:Cite web
  16. Шаблон:Cite web
  17. Шаблон:Cite web
  18. Шаблон:Cite web
  19. Шаблон:Cite tweet
  20. Шаблон:Cite tweet
  21. https://armstrade.org/includes/periodics/news/2023/0904/082575063/detail.shtml
  22. Шаблон:Cite web
  23. Шаблон:Cite magazine
  24. Шаблон:Cite book
  25. 25,00 25,01 25,02 25,03 25,04 25,05 25,06 25,07 25,08 25,09 25,10 25,11 25,12 25,13 25,14 Шаблон:Cite book
  26. Шаблон:Cite web
  27. Шаблон:Cite web
  28. Шаблон:Cite web
  29. Шаблон:Cite web
  30. Шаблон:Cite web
  31. https://armstrade.org/includes/periodics/news/2023/1010/125075749/detail.shtml
  32. Шаблон:Cite web
  33. Шаблон:Cite web
  34. Шаблон:Cite web
  35. Шаблон:Cite web
  36. 36,0 36,1 36,2 36,3 36,4 36,5 36,6 36,7 36,8 Шаблон:Cite book
  37. Шаблон:Cite book
  38. Шаблон:Cite magazine