Английская Википедия:AU Microscopii

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Starbox begin Шаблон:Starbox image Шаблон:Starbox observe Шаблон:Starbox character Шаблон:Starbox astrometry Шаблон:Starbox detail Шаблон:Starbox catalog Шаблон:Starbox reference Шаблон:Starbox end AU Microscopii (AU Mic) is a young red dwarf star located Шаблон:Convert away – about 8 times as far as the closest star after the Sun.[1] The apparent visual magnitude of AU Microscopii is 8.73,[2] which is too dim to be seen with the naked eye. It was given this designation because it is in the southern constellation Microscopium and is a variable star. Like β Pictoris, AU Microscopii has a circumstellar disk of dust known as a debris disk and at least two exoplanets, with the presence of an additional two planets being likely.[3][4]

Stellar properties

AU Mic is a young star at only 22 million years old; less than 1% of the age of the Sun.[5] With a stellar classification of M1 Ve,[2] it is a red dwarf star[6] with a physical radius of 75% that of the Sun. Despite being half the Sun's mass,[7][8] it is radiating only 9%[9] as much luminosity as the Sun. This energy is being emitted from the star's outer atmosphere at an effective temperature of 3,700 K, giving it the cool orange-red hued glow of an M-type star.[10] AU Microscopii is a member of the β Pictoris moving group.[11][12] AU Microscopii may be gravitationally bound to the binary star system AT Microscopii.[13]

Файл:AUMicLightCurve.png
A light curve for AU Microscopii, plotted from TESS data[14]

AU Microscopii has been observed in every part of the electromagnetic spectrum from radio to X-ray and is known to undergo flaring activity at all these wavelengths.[15][16][17][18] Its flaring behaviour was first identified in 1973.[19][20] Underlying these random outbreaks is a nearly sinusoidal variation in its brightness with a period of 4.865 days. The amplitude of this variation changes slowly with time. The V band brightness variation was approximately 0.3 magnitudes in 1971; by 1980 it was merely 0.1 magnitudes.[21] Шаблон:Clear left

Planetary system

AU Microscopii's debris disk has an asymmetric structure and an inner gap or hole cleared of debris, which has led a number of astronomers to search for planets orbiting AU Microscopii. By 2007, no searches had led to any detections of planets.[22][23] However, in 2020 the discovery of a Neptune-sized planet was announced based on transit observations by TESS.[5] Its rotation axis is well aligned with the rotation axis of the parent star, with the misalignment being equal to 5Шаблон:±°.[24]

Since 2018, a second planet, AU Microscopii c, was suspected to exist. It was confirmed in December 2020, after additional transit events were documented by the TESS observatory.[25]

A third planet in the system was suspected since 2022 based on transit-timing variations,[26] and "validated" in 2023, although several possible orbital periods of planet d cannot be ruled out yet. This planet has a mass comparable to that of Earth.[3] Radial velocity observations have also found evidence for a fourth, outer planet as of 2023.[4]

Шаблон:OrbitboxPlanet begin Шаблон:OrbitboxPlanet Шаблон:OrbitboxPlanet hypothetical Шаблон:OrbitboxPlanet Шаблон:OrbitboxPlanet hypothetical Шаблон:OrbitboxPlanet disk Шаблон:Orbitbox end

Debris disk

Файл:Debris disk AU Mic HST.jpg
Hubble Space Telescope image of the debris disk around AU Microscopii.
Файл:Mysterious ripples moving through the disc of AU Microscopii.webm
This short time lapse sequence shows images of the debris disc.

AU Microscopii harbors its own disk of dust, first resolved at optical wavelengths in 2003 by Paul Kalas and collaborators using the University of Hawaii 2.2-m telescope on Mauna Kea, Hawaii.[1] This large debris disk faces the earth edge-on,[27] and measures at least 200 AU in radius. At these large distances from the star, the lifetime of dust in the disk exceeds the age of AU Microscopii.[1] The disk has a gas to dust mass ratio of no more than 6:1, much lower than the usually assumed primordial value of 100:1.[28] The debris disk is therefore referred to as "gas-poor". The total amount of dust visible in the disk is estimated to be at least a lunar mass, while the larger planetesimals from which the dust is produced are inferred to have at least six lunar masses.[29]

The spectral energy distribution of AU Microscopii's debris disk at submillimetre wavelengths indicate the presence of an inner hole in the disk extending to 17 AU,[30] while scattered light images estimate the inner hole to be 12 AU in radius.[31] Combining the spectral energy distribution with the surface brightness profile yields a smaller estimate of the radius of the inner hole, 1 - 10 AU.[22]

The inner part of the disk is asymmetric and shows structure in the inner 40 AU.[32] The inner structure has been compared with that expected to be seen if the disk is influenced by larger bodies or has undergone recent planet formation.[32]

The surface brightness (brightness per area) of the disk in the near infrared <math style="vertical-align:+0em">\scriptstyle I</math> as a function of projected distance <math style="vertical-align:+0em">\scriptstyle r</math> from the star follows a characteristic shape. The inner <math style="vertical-align:+0em">\scriptstyle r\,<\,15 AU</math> of the disk appear approximately constant in density and the brightness is unchanging, more-or-less flat.[31] Around <math style="vertical-align:-0.07em">\scriptstyle r\, \approx\, 15 AU</math> the density and surface brightness begins to decrease: first it decreases slowly in proportion to distance as <math style="vertical-align:+0em">\scriptstyle I\, \propto \, r^{-1.8}</math>; then outside <math style="vertical-align:+0em">\scriptstyle r\, \approx\, 43 AU</math>, the density and brightness drops much more steeply, as <math style="vertical-align:+0em">\scriptstyle I\, \propto \, r^{-4.7}</math>.[31] This "broken power-law" shape is similar to the shape of the profile of β Pic's disk.

In October 2015 it was reported that astronomers using the Very Large Telescope (VLT) had detected very unusual outward-moving features in the disk. By comparing the VLT images with those taken by the Hubble Space Telescope in 2010 and 2011 it was found that the wave-like structures are moving away from the star at speeds of up to 10 kilometers per second (22,000 miles per hour). The waves farther away from the star seem to be moving faster than those close to it, and at least three of the features are moving fast enough to escape the gravitational pull of the star.[33]

Methods of observation

Файл:The View from Within AU Microscopii's Disk.jpg
Artist's impression of AU Microscopii Credit: NASA/ESA/G. Bacon (STScI)

AU Mic's disk has been observed at a variety of different wavelengths, giving humans different types of information about the system. The light from the disk observed at optical wavelengths is stellar light that has reflected (scattered) off dust particles into Earth's line of sight. Observations at these wavelengths utilize a coronagraphic spot to block the bright light coming directly from the star. Such observations provide high-resolution images of the disk. Because light having a wavelength longer than the size of a dust grain is scattered only poorly, comparing images at different wavelengths (visible and near-infrared, for example) gives humans information about the sizes of the dust grains in the disk.[34]

Файл:Hubble captures blobs of material sweeping through stellar disc AU Microscopii.tif
Hubble observations of blobs of material sweeping through stellar disc.[35]

Optical observations have been made with the Hubble Space Telescope and Keck Telescopes. The system has also been observed at infrared and sub-millimeter wavelengths. This light is emitted directly by dust grains as a result of their internal heat (modified blackbody radiation). The disk cannot be resolved at these wavelengths, so such observations are measurements of the amount of light coming from the entire system. Observations at increasingly longer wavelengths give information about dust particles of larger sizes and at larger distances from the star. These observations have been made with the James Clerk Maxwell Telescope and Spitzer Space Telescope.

Файл:Dusty Debris Disk Around AU Mic (au-mic1).jpeg
James Webb Space Telescope has imaged (Au Mic) the inner workings of a dusty disk surrounding a nearby red dwarf star. [36]

See also


References

Шаблон:Reflist

External links

Шаблон:Commons category

Шаблон:Stars of Microscopium

  1. 1,0 1,1 1,2 Ошибка цитирования Неверный тег <ref>; для сносок KALASETAL04 не указан текст
  2. 2,0 2,1 Ошибка цитирования Неверный тег <ref>; для сносок aaa460_3_695 не указан текст
  3. 3,0 3,1 Ошибка цитирования Неверный тег <ref>; для сносок Wittrock2023 не указан текст
  4. 4,0 4,1 Ошибка цитирования Неверный тег <ref>; для сносок Donati2023 не указан текст
  5. 5,0 5,1 Ошибка цитирования Неверный тег <ref>; для сносок PlavchanNature_2020 не указан текст
  6. Ошибка цитирования Неверный тег <ref>; для сносок baas23_1382 не указан текст
  7. Ошибка цитирования Неверный тег <ref>; для сносок DELZANNA2002 не указан текст
  8. Ошибка цитирования Неверный тег <ref>; для сносок sci303_5666_1982 не указан текст
  9. Ошибка цитирования Неверный тег <ref>; для сносок apj698_2_1068 не указан текст
  10. Ошибка цитирования Неверный тег <ref>; для сносок csiro не указан текст
  11. Ошибка цитирования Неверный тег <ref>; для сносок araa41_1_685 не указан текст
  12. Ошибка цитирования Неверный тег <ref>; для сносок apj520_2_L123 не указан текст
  13. Ошибка цитирования Неверный тег <ref>; для сносок aaa302_193 не указан текст
  14. Ошибка цитирования Неверный тег <ref>; для сносок MAST не указан текст
  15. Ошибка цитирования Неверный тег <ref>; для сносок apj421_2_800 не указан текст
  16. Ошибка цитирования Неверный тег <ref>; для сносок apj414_2_L49 не указан текст
  17. Ошибка цитирования Неверный тег <ref>; для сносок apj312_822 не указан текст
  18. Ошибка цитирования Неверный тег <ref>; для сносок TSIKOUDI2000 не указан текст
  19. Ошибка цитирования Неверный тег <ref>; для сносок apjs25_1 не указан текст
  20. Ошибка цитирования Неверный тег <ref>; для сносок mnras197_815 не указан текст
  21. Ошибка цитирования Неверный тег <ref>; для сносок aaa174_1_139 не указан текст
  22. 22,0 22,1 Ошибка цитирования Неверный тег <ref>; для сносок METCHEVETAL05 не указан текст
  23. Ошибка цитирования Неверный тег <ref>; для сносок MASCIADRIETAL05 не указан текст
  24. Ошибка цитирования Неверный тег <ref>; для сносок Duncan2020 не указан текст
  25. Ошибка цитирования Неверный тег <ref>; для сносок Martioli2020 не указан текст
  26. Ошибка цитирования Неверный тег <ref>; для сносок Wittrock2022 не указан текст
  27. Шаблон:Cite journal
  28. Ошибка цитирования Неверный тег <ref>; для сносок ROBERGEETAL05 не указан текст
  29. Шаблон:Cite journal
  30. Шаблон:Cite journal
  31. 31,0 31,1 31,2 Ошибка цитирования Неверный тег <ref>; для сносок KIRSTETAL05 не указан текст
  32. 32,0 32,1 Ошибка цитирования Неверный тег <ref>; для сносок LIU04 не указан текст
  33. Шаблон:Cite web
  34. Шаблон:Cite news
  35. Шаблон:Cite web
  36. Шаблон:Cite news