Английская Википедия:Abel's theorem

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:About

Шаблон:No footnotes In mathematics, Abel's theorem for power series relates a limit of a power series to the sum of its coefficients. It is named after Norwegian mathematician Niels Henrik Abel.

Theorem

Let the Taylor series <math display=block>G (x) = \sum_{k=0}^\infty a_k x^k</math> be a power series with real coefficients <math>a_k</math> with radius of convergence <math>1.</math> Suppose that the series <math display=block>\sum_{k=0}^\infty a_k</math> converges. Then <math>G(x)</math> is continuous from the left at <math>x = 1,</math> that is, <math display=block>\lim_{x\to 1^-} G(x) = \sum_{k=0}^\infty a_k.</math>

The same theorem holds for complex power series <math display=block>G(z) = \sum_{k=0}^\infty a_k z^k,</math> provided that <math>z \to 1</math> entirely within a single Stolz sector, that is, a region of the open unit disk where <math display=block>|1-z| \leq M(1-|z|)</math> for some fixed finite <math>M > 1</math>. Without this restriction, the limit may fail to exist: for example, the power series <math display=block>\sum_{n>0} \frac{z^{3^n}-z^{2\cdot 3^n}} n</math> converges to <math>0</math> at <math>z = 1,</math> but is unbounded near any point of the form <math>e^{\pi i/3^n},</math> so the value at <math>z = 1</math> is not the limit as <math>z</math> tends to 1 in the whole open disk.

Note that <math>G(z)</math> is continuous on the real closed interval <math>[0, t]</math> for <math>t < 1,</math> by virtue of the uniform convergence of the series on compact subsets of the disk of convergence. Abel's theorem allows us to say more, namely that <math>G(z)</math> is continuous on <math>[0, 1].</math>

Stolz sector

Файл:Stolz sector plot.svg
20 Stolz sectors, for <math>M</math> ranging from 1.01 to 10. The red lines are the tangents to the cone at the right end.

The Stolz sector <math>|1-z|\leq M(1-|z|)</math> has explicit equation<math display="block">y^2 = -\frac{M^4 (x^2 - 1) - 2 M^2 ((x - 1) x + 1) + 2 \sqrt{M^4 (-2 M^2 (x - 1) + 2 x - 1)} + (x - 1)^2}{(M^2 - 1)^2}</math>and is plotted on the right for various values.

The left end of the sector is <math>x = \frac{1-M}{1+M}</math>, and the right end is <math>x=1</math>. On the right end, it becomes a cone with angle <math>2\theta</math> where <math>\cos\theta = \frac{1}{M}</math>.

Remarks

As an immediate consequence of this theorem, if <math>z</math> is any nonzero complex number for which the series <math display=block>\sum_{k=0}^\infty a_k z^k</math> converges, then it follows that <math display=block>\lim_{t\to 1^{-}} G(tz) = \sum_{k=0}^\infty a_kz^k</math> in which the limit is taken from below.

The theorem can also be generalized to account for sums which diverge to infinity.Шаблон:Cn If <math display=block>\sum_{k=0}^\infty a_k = \infty</math> then <math display=block>\lim_{z\to 1^{-}} G(z) \to \infty.</math>

However, if the series is only known to be divergent, but for reasons other than diverging to infinity, then the claim of the theorem may fail: take, for example, the power series for <math display=block>\frac{1}{1+z}.</math>

At <math>z = 1</math> the series is equal to <math>1 - 1 + 1 - 1 + \cdots,</math> but <math>\tfrac{1}{1+1} = \tfrac{1}{2}.</math>

We also remark the theorem holds for radii of convergence other than <math>R = 1</math>: let <math display=block>G(x) = \sum_{k=0}^\infty a_kx^k</math> be a power series with radius of convergence <math>R,</math> and suppose the series converges at <math>x = R.</math> Then <math>G(x)</math> is continuous from the left at <math>x = R,</math> that is, <math display=block>\lim_{x\to R^-}G(x) = G(R).</math>

Applications

The utility of Abel's theorem is that it allows us to find the limit of a power series as its argument (that is, <math>z</math>) approaches <math>1</math> from below, even in cases where the radius of convergence, <math>R,</math> of the power series is equal to <math>1</math> and we cannot be sure whether the limit should be finite or not. See for example, the binomial series. Abel's theorem allows us to evaluate many series in closed form. For example, when <math display=block>a_k = \frac{(-1)^k}{k+1},</math> we obtain <math display=block>G_a(z) = \frac{\ln(1+z)}{z}, \qquad 0 < z < 1,</math> by integrating the uniformly convergent geometric power series term by term on <math>[-z, 0]</math>; thus the series <math display=block>\sum_{k=0}^\infty \frac{(-1)^k}{k+1}</math> converges to <math>\ln 2</math> by Abel's theorem. Similarly, <math display=block>\sum_{k=0}^\infty \frac{(-1)^k}{2k+1}</math> converges to <math>\arctan 1 = \tfrac{\pi}{4}.</math>

<math>G_a(z)</math> is called the generating function of the sequence <math>a.</math> Abel's theorem is frequently useful in dealing with generating functions of real-valued and non-negative sequences, such as probability-generating functions. In particular, it is useful in the theory of Galton–Watson processes.

Outline of proof

After subtracting a constant from <math>a_0,</math> we may assume that <math>\sum_{k=0}^\infty a_k=0.</math> Let <math>s_n=\sum_{k=0}^n a_k\!.</math> Then substituting <math>a_k=s_k-s_{k-1}</math> and performing a simple manipulation of the series (summation by parts) results in <math display=block>G_a(z) = (1-z)\sum_{k=0}^{\infty} s_k z^k.</math>

Given <math>\varepsilon > 0,</math> pick <math>n</math> large enough so that <math>|s_k| < \varepsilon</math> for all <math>k \geq n</math> and note that <math display=block>\left|(1-z)\sum_{k=n}^\infty s_kz^k \right| \leq \varepsilon |1-z|\sum_{k=n}^\infty |z|^k = \varepsilon|1-z|\frac{|z|^n}{1-|z|} < \varepsilon M </math> when <math>z</math> lies within the given Stolz angle. Whenever <math>z</math> is sufficiently close to <math>1</math> we have <math display=block>\left|(1-z)\sum_{k=0}^{n-1} s_kz^k \right| < \varepsilon,</math> so that <math>\left|G_a(z)\right| < (M+1) \varepsilon</math> when <math>z</math> is both sufficiently close to <math>1</math> and within the Stolz angle.

Related concepts

Converses to a theorem like Abel's are called Tauberian theorems: There is no exact converse, but results conditional on some hypothesis. The field of divergent series, and their summation methods, contains many theorems of abelian type and of tauberian type.

See also

Further reading

External links