Английская Википедия:Abel equation
Шаблон:Short description Шаблон:Hatnote
The Abel equation, named after Niels Henrik Abel, is a type of functional equation of the form
- <math>f(h(x)) = h(x + 1)</math>
or
- <math>\alpha(f(x)) = \alpha(x)+1</math>.
The forms are equivalent when Шаблон:Mvar is invertible. Шаблон:Mvar or Шаблон:Mvar control the iteration of Шаблон:Mvar.
Equivalence
The second equation can be written
- <math>\alpha^{-1}(\alpha(f(x))) = \alpha^{-1}(\alpha(x)+1)\, .</math>
Taking Шаблон:Math, the equation can be written
- <math>f(\alpha^{-1}(y)) = \alpha^{-1}(y+1)\, .</math>
For a known function Шаблон:Math , a problem is to solve the functional equation for the function Шаблон:Math, possibly satisfying additional requirements, such as Шаблон:Math.
The change of variables Шаблон:Math, for a real parameter Шаблон:Mvar, brings Abel's equation into the celebrated Schröder's equation, Шаблон:Math .
The further change Шаблон:Math into Böttcher's equation, Шаблон:Math.
The Abel equation is a special case of (and easily generalizes to) the translation equation,[1]
- <math>\omega( \omega(x,u),v)=\omega(x,u+v) ~,</math>
e.g., for <math>\omega(x,1) = f(x)</math>,
- <math>\omega(x,u) = \alpha^{-1}(\alpha(x)+u)</math>. (Observe Шаблон:Math.)
The Abel function Шаблон:Math further provides the canonical coordinate for Lie advective flows (one parameter Lie groups).
History
Initially, the equation in the more general form [2] [3] was reported. Even in the case of a single variable, the equation is non-trivial, and admits special analysis.[4][5][6]
In the case of a linear transfer function, the solution is expressible compactly.[7]
Special cases
The equation of tetration is a special case of Abel's equation, with Шаблон:Math.
In the case of an integer argument, the equation encodes a recurrent procedure, e.g.,
- <math>\alpha(f(f(x)))=\alpha(x)+2 ~,</math>
and so on,
- <math>\alpha(f_n(x))=\alpha(x)+n ~.</math>
Solutions
The Abel equation has at least one solution on <math>E</math> if and only if for all <math>x \in E</math> and all <math>n \in \mathbb{N}</math>, <math>f^{n}(x) \neq x</math>, where <math> f^{n} = f \circ f \circ ... \circ f</math>, is the function Шаблон:Mvar iterated Шаблон:Mvar times.[8]
Analytic solutions (Fatou coordinates) can be approximated by asymptotic expansion of a function defined by power series in the sectors around a parabolic fixed point.[9] The analytic solution is unique up to a constant.[10]
See also
- Functional equation
- Infinite compositions of analytic functions
- Iterated function
- Shift operator
- Superfunction
References
- ↑ Aczél, János, (1966): Lectures on Functional Equations and Their Applications, Academic Press, reprinted by Dover Publications, Шаблон:ISBN .
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Korkine, A (1882). "Sur un problème d'interpolation", Bull Sci Math & Astron 6(1) 228—242. online
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ R. Tambs Lyche, Sur l'équation fonctionnelle d'Abel, University of Trondlyim, Norvege
- ↑ Dudko, Artem (2012). Dynamics of holomorphic maps: Resurgence of Fatou coordinates, and Poly-time computability of Julia sets Ph.D. Thesis
- ↑ Classifications of parabolic germs and fractal properties of orbits by Maja Resman, University of Zagreb, Croatia