Английская Википедия:Active asteroid

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Файл:596 Scheila, 5 minute exposure, Dec. 12, 2010.jpg
Asteroid 596 Scheila displaying a comet-like appearance on 12 December 2010
Файл:Aftermath of DART Collision with Dimorphos Captured by SOAR Telescope (noirlab2223a).jpg
Dust ejecta and tail from the aftermath of the Double Asteroid Redirection Test's impact on the asteroid moon Dimorphos, as seen by the Southern Astrophysical Research Telescope in 2022

Active asteroids are small Solar System bodies that have asteroid-like orbits but show comet-like visual characteristics.[1] That is, they show a coma, tail, or other visual evidence of mass-loss (like a comet), but their orbits remain within Jupiter's orbit (like an asteroid).[2][3] These bodies were originally designated main-belt comets (MBCs) in 2006 by astronomers David Jewitt and Henry Hsieh, but this name implies they are necessarily icy in composition like a comet and that they only exist within the main-belt, whereas the growing population of active asteroids shows that this is not always the case.[2][4][5]

The first active asteroid discovered is 7968 Elst–Pizarro. It was discovered (as an asteroid) in 1979 but then was found to have a tail by Eric Elst and Guido Pizarro in 1996 and given the cometary designation 133P/Elst-Pizarro.[2][6]

Orbits

Unlike comets, which spend most of their orbit at Jupiter-like or greater distances from the Sun, active asteroids follow orbits within the orbit of Jupiter that are often indistinguishable from the orbits of standard asteroids. Jewitt defines active asteroids as those bodies that, in addition to having visual evidence of mass loss, have an orbit with:[3]

Jewitt chooses 3.08 as the Tisserand parameter to separate asteroids and comets instead of 3.0 (the Tisserand parameter of Jupiter itself) to avoid ambiguous cases caused by the real Solar System deviating from an idealized restricted three-body problem.[3]

The first three identified active asteroids all orbit within the outer part of the asteroid belt.[7]

Activity

Файл:14060-Asteroid-P2013R3-Disintegration-20140306.jpg
Disintegration of asteroid P/2013 R3 observed by the Hubble Space Telescope (6 March 2014).[8][9]

Some active asteroids display a cometary dust tail only for a part of their orbit near perihelion. This strongly suggests that volatiles at their surfaces are sublimating, driving off the dust.[10] Activity in 133P/Elst–Pizarro is recurrent, having been observed at each of the last three perihelia.[2] The activity persists for a month or several[7] out of each 5-6 year orbit, and is presumably due to ice being uncovered by minor impacts in the last 100 to 1000 years.[7] These impacts are suspected to excavate these subsurface pockets of volatile material helping to expose them to solar radiation.[7]

When discovered in January 2010, P/2010 A2 (LINEAR) was initially given a cometary designation and thought to be showing comet-like sublimation,[11] but P/2010 A2 is now thought to be the remnant of an asteroid-on-asteroid impact.[12][13] Observations of 596 Scheila indicated that large amounts of dust were kicked up by the impact of another asteroid of approximately 35 meters in diameter.

P/2013 R3

Шаблон:Main article P/2013 R3 (Catalina–PanSTARRS) was discovered independently by two observers by Richard E. Hill using the Catalina Sky Survey's 0.68-m Schmidt telescope and by Bryce T. Bolin using the 1.8-m Pan-STARRS1 telescope on Haleakala.[14] The discovery images taken by Pan-STARRS1 showed the appearance of two distinct sources within 3" of each other combined with a tail enveloping both sources. In October 2013, follow-up observations of P/2013 R3, taken with the 10.4 m Gran Telescopio Canarias on the island of La Palma, showed that this comet was breaking apart.[15] Inspection of the stacked CCD images obtained on October 11 and 12 showed that the main-belt comet presented a central bright condensation that was accompanied on its movement by three more fragments, A,B,C. The brightest A fragment was also detected at the reported position in CCD images obtained at the 1.52 m telescope of the Sierra Nevada Observatory in Granada on October 12.[15]

NASA reported on a series of images taken by the Hubble Space Telescope between October 29, 2013, and January 14, 2014, that show the increasing separation of the four main bodies.[16] The Yarkovsky–O'Keefe–Radzievskii–Paddack effect, caused by sunlight, increased the spin rate until the centrifugal force caused the rubble pile to separate.[16]

Dimorphos

Шаблон:Main

By smashing into the asteroid moon of the binary asteroid 65803 Didymos, NASA's Double Asteroid Redirection Test spacecraft made Dimorphos an active asteroid. Scientists had proposed that some active asteroids are the result of impact events, but no one had ever observed the activation of an asteroid. The DART mission activated Dimorphos under precisely known and carefully observed impact conditions, enabling the detailed study of the formation of an active asteroid for the first time.[17][18] Observations show that Dimorphos lost approximately 1 million kilograms after the collision.[19] Impact produced a dust plume that temporarily brightened the Didymos system and developed a Шаблон:Convert-long dust tail that persisted for several months.[20][21][22] The DART impact is predicted to have caused global resurfacing and deformation of Dimorphos's shape, leaving an impact crater several tens of meters in diameter.[23][24][25] The impact has likely sent Dimorphos into a chaotically tumbling rotation that will subject the moon to irregular tidal forces by Didymos before it will eventually return to a tidally locked state within several decades.[26][27][28]

Composition

Some active asteroids show signs that they are icy in composition like a traditional comet, while others are known to be rocky like an asteroid. It has been hypothesized that main-belt comets may have been the source of Earth's water, because the deuterium–hydrogen ratio of Earth's oceans is too low for classical comets to have been the principal source.[29] European scientists have proposed a sample-return mission from a MBC called Caroline to analyse the content of volatiles and collect dust samples.[10]

List

Identified members of this morphology class (TJup>3.08) include:[30]Шаблон:Rp

Name Semi-major axis
(AU)
Perihelion
(AU)
Eccentricity TJup Orbital
class
Diameter
(km)
Rotation
period
(hr)
Cause Activity
discovery
year
Recurrent?
1 Ceres 2.766 2.550 0.078 3.310 main-belt (middle) 939.4 9.07 Water sublimation[3] 2014
493 Griseldis 3.116 2.568 0.176 3.140 main-belt (outer) 41.56 51.94 Impact[31] 2015 Шаблон:N&
596 Scheila 2.929 2.45 0.163 3.209 main-belt (outer) 159.72 15.85 Impact[32][33][34] 2011 Шаблон:N&
2201 Oljato 2.174 0.624 0.713 3.299 NEO (Apollo) 1.8 >26 Sublimation[35] 1984 Шаблон:N&
3200 Phaethon 1.271 0.140 0.890 4.510 NEO (Apollo) 6.26 3.60 Thermal fracturing, dehydration cracking, and/or rotational disintegration[36] 2010 Шаблон:Y&
6478 Gault 2.305 1.860 0.193 3.461 main-belt (inner) 5.6 2.49 Rotational disintegration[37][38][39] 2019 Шаблон:Y&
Шаблон:HsШаблон:Mp 3.159 2.909 0.079 3.197 main-belt (outer) 10.38 3.33 Rotational disintegration[40] 2014 Шаблон:N&
Шаблон:Hs65803 Didymos/Dimorphos 1.643 1.013 0.383 4.204 NEO (Apollo) 0.77 / 0.15 2.26 Human-caused impact 2022 Шаблон:N&
Шаблон:Hs101955 Bennu 1.126 0.896 0.204 5.525 NEO (Apollo) 0.48 4.29 (unknown)[30]Шаблон:Rp
Electrostatic lofting, impacts, thermal fracturing, or dehydration cracking
2019 Шаблон:Y&
Шаблон:HsШаблон:Mp 3.176 2.783 0.124 3.188 main-belt (outer) 2023
Шаблон:Mp 3.071 2.943 0.042 3.199 main-belt (outer) <0.4 2022 Шаблон:N&
Шаблон:Mp 2.744 1.770 0.355 3.230 main-belt (middle) 1.483 2023 Шаблон:Y&
Шаблон:Mp 3.062 2.957 0.034 3.201 main-belt (outer) 2023 Шаблон:N&
Шаблон:Mp 2.765 2.319 0.161 3.280 main-belt (middle) 2023
Шаблон:Mp 3.128 2.451 0.217 3.160 main-belt (outer) 2023
Шаблон:Mp 2.696 2.300 0.147 3.351 main-belt (middle) 2023
Шаблон:Hs107P/4015 Wilson–Harrington 2.625 0.966 0.632 3.082 NEO (Apollo) 6.92 7.15 Sublimation[41][42] 1949 Шаблон:N&
Шаблон:Hs133P/7968 Elst–Pizarro 3.165 2.668 0.157 3.184 main-belt (outer) 3.8 3.47 Sublimation/rotational disintegration[43][44] 1996 Шаблон:Y&
Шаблон:Hs176P/118401 LINEAR 3.194 2.578 0.193 3.167 main-belt (outer) 4.0 22.23 Sublimation[45] 2005 Шаблон:N&
Шаблон:Hs233P/La Sagra (Шаблон:Mp) 3.033 1.786 0.411 3.081 main-belt (outer) 3.0 2010 Шаблон:N&
Шаблон:Hs238P/Read (P/2005 U1) 3.162 2.362 0.253 3.153 main-belt (outer) 0.8 Sublimation[46] 2005 Шаблон:Y&
Шаблон:Hs259P/Garradd (P/2008 R1) 2.727 1.794 0.342 3.217 main-belt (middle) 0.60 Sublimation[47] 2008 Шаблон:Y&
Шаблон:Hs[[(300163) 2006 VW139|288P/Шаблон:Mp]] 3.051 2.438 0.201 3.203 main-belt (outer) 1.8 / 1.2 Sublimation[48] 2011 Шаблон:Y&
Шаблон:Hs311P/PanSTARRS (P/2013 P5) 2.189 1.935 0.116 3.660 main-belt (inner) 0.4 >5.4 Rotational disintegration[49][50][51] 2013 Шаблон:Y&
Шаблон:Hs313P/Gibbs (P/2003 S10) 3.154 2.391 0.242 3.133 main-belt (outer) 2.0 Sublimation[52] 2003 Шаблон:Y&
Шаблон:Hs324P/La Sagra (P/2010 R2) 3.098 2.621 0.154 3.099 main-belt (outer) 1.1 Sublimation[53] 2010 Шаблон:Y&
Шаблон:Hs331P/Gibbs (P/2012 F5) 3.005 2.879 0.042 3.228 main-belt (outer) 3.54 3.24 Rotational disintegration[54][55] 2012 Шаблон:N&
Шаблон:Hs354P/LINEAR (P/2010 A2) 2.290 2.004 0.125 3.583 main-belt (inner) 0.12 11.36 Impact[56] 2010 Шаблон:N&
Шаблон:Hs358P/PanSTARRS (P/2012 T1) 3.155 2.410 0.236 3.134 main-belt (outer) 0.64 Sublimation[57] 2012 Шаблон:N&
Шаблон:Hs426P/PanSTARRS (P/2019 A7) 3.188 2.675 0.161 3.103 main-belt (outer) 2.4 2019 Шаблон:N&
Шаблон:Hs427P/ATLAS (P/2017 S5) 3.171 2.178 0.313 3.092 main-belt (outer) 0.90 1.4 Sublimation/rotational disintegration[58] 2017 Шаблон:N&
Шаблон:Hs432P/PanSTARRS (P/2021 N4) 3.045 2.302 0.244 3.170 main-belt (outer) <1.4 2021 Шаблон:N&
Шаблон:Hs[[(248370) 2005 QN173|433P/Шаблон:Mp]] 3.067 2.374 0.226 3.192 main-belt (outer) 3.2 Sublimation/rotational disintegration 2021 Шаблон:Y&
Шаблон:Hs435P/PanSTARRS (P/2021 T3) 3.018 2.056 0.319 3.090 main-belt (outer) 2021 Шаблон:N&
Шаблон:Hs455P/PanSTARRS (P/2021 S9) 3.156 2.193 0.305 3.087 main-belt (outer) <1.6 2017 Шаблон:N&
Шаблон:Hs456P/PanSTARRS (P/2021 L4) 3.165 2.788 0.119 3.125 main-belt (outer) <4.4 2021 Шаблон:N&
Шаблон:Hs457P/2020 O1 (Lemmon–PanSTARRS) 2.647 2.329 0.120 3.376 main-belt (middle) 0.84 1.67 Sublimation/rotational disintegration[59] 2020 Шаблон:Y&
P/2013 R3 (Catalina–PanSTARRS) 3.033 2.205 0.273 3.184 main-belt (outer) ~0.4 Sublimation/rotational disintegration[60] 2013 Шаблон:N&
P/2015 X6 (PanSTARRS) 2.755 2.287 0.170 3.318 main-belt (middle) <1.4 Sublimation[61] 2015 Шаблон:N&
P/2016 G1 (PanSTARRS) 2.583 2.041 0.210 3.367 main-belt (middle) <0.8 Impact[62] 2016 Шаблон:N&
P/2016 J1-A/B (PanSTARRS) 3.172 2.449 0.228 3.113 main-belt (outer) <1.8 / <0.8 Sublimation[63] 2016 Шаблон:Y&
P/2018 P3 (PanSTARRS) 3.007 1.756 0.416 3.096 main-belt (outer) <1.2 Sublimation 2018 Шаблон:Y&
P/2019 A3 (PanSTARRS) 3.147 2.313 0.265 3.099 main-belt (outer) <0.8 2019 Шаблон:N&
P/2019 A4 (PanSTARRS) 2.614 2.379 0.090 3.365 main-belt (middle) 0.34 2019 Шаблон:N&
P/2021 A5 (PanSTARRS) 3.047 2.620 0.140 3.147 main-belt (outer) 0.30 Sublimation 2021 Шаблон:N&
P/2021 R8 (Sheppard) 3.019 2.131 0.294 3.179 main-belt (outer) 2021 Шаблон:N&
P/2022 R5 (PanSTARRS) 3.071 2.470 0.196 3.148 main-belt (outer) 2022

Exploration

Файл:PIA23554-AsteroidBennu-EjectingParticles-20190106.jpg
Asteroid 101955 Bennu seen ejecting particles on January 6, 2019, in images taken by the OSIRIS-REx spacecraft

Castalia is a proposed mission concept for a robotic spacecraft to explore 133P/Elst–Pizarro and make the first in situ measurements of water in the asteroid belt, and thus, help solve the mystery of the origin of Earth's water.[64] The lead is Colin Snodgrass, from The Open University in the UK. Castalia was proposed in 2015 and 2016 to the European Space Agency within the Cosmic Vision programme missions M4 and M5, but it was not selected. The team continues to mature the mission concept and science objectives.[64] Because of the construction time required and orbital dynamics, a launch date of October 2028 was proposed.[64]

On January 6, 2019, the OSIRIS-REx mission first observed episodes of particle ejection from 101955 Bennu shortly after entering orbit around the near-Earth asteroid, leading it to be newly classified as an active asteroid and marking the first time that asteroid activity had been observed up close by a spacecraft. It has since observed at least 10 other such events.[4] The scale of these observed mass loss events is much smaller than those previously observed at other active asteroids by telescopes, indicating that there is a continuum of mass loss event magnitudes at active asteroids.[65]

See also

References

Шаблон:Reflist

External links

Шаблон:Asteroids Шаблон:Comets Шаблон:Small Solar System bodies Шаблон:Solar System Шаблон:Portal bar

  1. Шаблон:Cite news
  2. 2,0 2,1 2,2 2,3 Шаблон:Cite web
  3. 3,0 3,1 3,2 3,3 Шаблон:Cite book
  4. 4,0 4,1 Шаблон:Cite news
  5. Шаблон:Cite webШаблон:Cbignore
  6. Шаблон:Cite web
  7. 7,0 7,1 7,2 7,3 Шаблон:Cite web (older 2010 site) Шаблон:Webarchive
  8. Шаблон:Cite web
  9. Шаблон:Cite news
  10. 10,0 10,1 The proposed Caroline ESA M3 mission to a Main Belt Comet. Geraint H. Jones, Jessica Agarwal, Neil Bowles, Mark Burchell, Andrew J. Coates, Alan Fitzsimmons, Amara Graps, Henry H. Hsieh, Carey M. Lisse, Stephen C. Lowry, Adam Masters, Colin Snodgrass, Cecilia Tubiana. Advances in Space Research. 25 February 2018. Шаблон:Doi
  11. MPEC 2010-A51 : COMET P/2010 A2 (LINEAR)
  12. Шаблон:Cite journal
  13. Шаблон:Cite journal
  14. Шаблон:Cite journal
  15. 15,0 15,1 Шаблон:Cite web
  16. 16,0 16,1 Шаблон:Cite web
  17. Шаблон:Cite web Шаблон:PD-notice
  18. Шаблон:Cite journal
  19. Шаблон:Cite journal
  20. Шаблон:Cite web
  21. Шаблон:Cite web
  22. Шаблон:Cite journal
  23. Шаблон:Cite journal
  24. Шаблон:Cite journal
  25. Шаблон:Cite conference
  26. Шаблон:Cite journal
  27. Шаблон:Cite journal
  28. Шаблон:Cite conference
  29. Main-Belt Comets May Have Been Source Of Earths Water, Space Daily, Mar 23, (2006).
  30. 30,0 30,1 Шаблон:Cite book
  31. Шаблон:Cite journal
  32. Шаблон:Cite journal
  33. Шаблон:Cite journal
  34. Шаблон:Cite journal
  35. Шаблон:Cite journal
  36. Шаблон:Cite journal
  37. Шаблон:Cite journal
  38. Шаблон:Cite journal
  39. Шаблон:Cite journal
  40. Шаблон:Cite journal
  41. Шаблон:Cite journal
  42. Шаблон:Cite journal
  43. Шаблон:Cite journal
  44. Шаблон:Cite journal
  45. Шаблон:Cite journal
  46. Шаблон:Cite journal
  47. Шаблон:Cite journal
  48. Шаблон:Cite journal
  49. Шаблон:Cite journal
  50. Шаблон:Cite journal
  51. Шаблон:Cite journal
  52. Шаблон:Cite journal
  53. Шаблон:Cite journal
  54. Шаблон:Cite journal
  55. Шаблон:Cite journal
  56. Шаблон:Cite journal
  57. Шаблон:Cite journal
  58. Шаблон:Cite journal
  59. Шаблон:Cite journal
  60. Шаблон:Cite journal
  61. Шаблон:Cite journal
  62. Шаблон:Cite journal
  63. Шаблон:Cite journal
  64. 64,0 64,1 64,2 Шаблон:Cite journal
  65. Шаблон:Cite journal