Английская Википедия:Alexander Mathis

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:External links Шаблон:Infobox scientist Alexander Mathis is an Austrian mathematician, computational neuroscientist and software developer. He is currently an assistant professor at the École polytechnique fédérale de Lausanne (EPFL) in Switzerland. His research interest focus on research at the intersection of computational neuroscience and machine learning.

Education

Mathis studied mathematics, logic and theory of science at the Ludwig Maximilians University of Munich, Germany.[1] His interest in computing and cryptography led him to pursue a PhD in computational neuroscience at the Graduate School for Systemic Neuroscience under the supervision of Prof. Andreas Herz at the department of neurobiology at the Ludwig Maximilians University of Munich.[2] During his PhD work, he studied optimal coding approaches to reveal the properties of grid cells[3] and how distributed population activity readout can be implemented in plausible bio-physical models.[4] The predictions of this theory were confirmed in rats by the Moser laboratory[5] and artificial systems optimized for navigation by DeepMind.[6]

He spent an exchange year at the Autonomous University of Barcelona in Spain.[1]

Career and research

After completing his PhD, Mathis went in 2013 as a postdoctoral fellow to work under the mentor-ship of Prof. Venkatesh N. Murthy at the Department of Molecular and Cellular Biology at Harvard University.[7][8] In addition, in 2015, he joined the research group of Prof. Matthias Bethge at the Bernstein Center for Computational Neuroscience in Tübingen and the University of Tübingen in Germany.[9] His postdoctoral research positions were funded by a DFG postdoctoral fellowship[10] and a Marie-Curie fellowship.[11]

Mathis conducted research in odor-guided navigation, social behaviors, motor learning, and the cocktail party problem.[12] He employed deep learning methods and experimentally testable computational models to study animal behavior and neural data. He has developed tools such as DeepLabCut[13] and DeepDraw[14] to accurately measure animal and human behavior.[15] He is one of the initiators and developers of the open-source research tool DeepLabCut with his spouse Mackenzie Weygandt Mathis that estimates animal postures via computer vision and machine learning.[16] Mathis has also created models and theories on adaptive behavior, in particular on motor control and sensorimotor transformations.[17] Several publications appeared during this research period, including the highly cited paper "DeepLabCut: markerless pose estimation of user-defined body parts with deep learning" by Mathis et al. published in 2018 in Nature Neuroscience.[18]

In August 2020, he moved as an assistant professor to the École polytechnique fédérale de Lausanne (EPFL) in Switzerland where he started his own research laboratory "the Mathis Group", dedicated to research at the intersection of computational neuroscience and machine learning. The Mathis Group is committed to enhancing machine learning tools for animal behavior analysis and to developing of neural network models of sensorimotor representation.[19]

His research was featured in The Atlantic,[20] Nature,[21] and Quanta Magazine,.[22]

Awards and grants

Chan Zuckerberg Initiative (CZI) awarded funding for Mathis' open source project DeepLabCut.[23] Mathis further was awarded with a postdoctoral fellowship by the Deutsche Forschungsgemeinschaft[10] and a Marie Skłodowska-Curie Actions fellowship by the European Union[11]

Publications

Шаблон:Google Scholar id

Personal life

Mathis is married to fellow neuroscientist Prof. Dr. Mackenzie Weygandt Mathis, who is also the developer of DeepLabCut and an Assistant Professor at the École polytechnique fédérale de Lausanne (EPFL).[24]

References

Шаблон:Reflist

Шаблон:Authority control