Английская Википедия:Allotropes of phosphorus

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Файл:PhosphComby.jpg
White phosphorus (left), red phosphorus (center left and center right), and violet phosphorus (right)
Файл:PhosphorusAllotropes.svg
White phosphorus and resulting allotropes

Elemental phosphorus can exist in several allotropes, the most common of which are white and red solids. Solid violet and black allotropes are also known. Gaseous phosphorus exists as diphosphorus and atomic phosphorus.

White phosphorus

Шаблон:About Шаблон:Chembox

Файл:White phosphorus.png
White phosphorus crystal structure

White phosphorus, yellow phosphorus or simply tetraphosphorus (Шаблон:Chem2) exists as molecules of phosphorus made up of four atoms in a tetrahedral structure. The tetrahedral arrangement results in ring strain and instability. The molecule is described as consisting of six single phosphorus—phosphorus bonds (P–P bonds). Two crystalline forms are known. The α form is defined as the standard state of the element, but is actually metastable under standard conditions.[1] It has a body-centered cubic crystal structure, and transforms reversibly into the β form at 195.2 K. The β form is believed to have a hexagonal crystal structure.[2]

White phosphorus is a translucent waxy solid that quickly becomes yellow when exposed to light. For this reason it is also called yellow phosphorus. It glows greenish in the dark (when exposed to oxygen) and is highly flammable and pyrophoric (self-igniting) upon contact with air. It is toxic, causing severe liver damage on ingestion and phossy jaw from chronic ingestion or inhalation. The odour of combustion of this form has a characteristic garlic smell, and samples are commonly coated with white "diphosphorus pentoxide", which consists of Шаблон:Chem2 tetrahedral with oxygen inserted between the phosphorus atoms and at their vertices. White phosphorus is only slightly soluble in water and can be stored under water. Indeed, white phosphorus is safe from self-igniting onlyШаблон:Citation needed when it is submerged in water; due to this, unreacted white phosphorus can prove hazardous to beachcombers who may collect washed-up samples while unaware of their true nature.[3][4] Шаблон:Chem2 is soluble in benzene, oils, carbon disulfide, and disulfur dichloride.

Production and applications

The white allotrope can be produced using several methods. In the industrial process, phosphate rock is heated in an electric or fuel-fired furnace in the presence of carbon and silica.[5] Elemental phosphorus is then liberated as a vapour and can be collected under phosphoric acid. An idealized equation for this carbothermal reaction is shown for calcium phosphate (although phosphate rock contains substantial amounts of fluoroapatite):

Шаблон:Chem2

White phosphorus has an appreciable vapour pressure at ordinary temperatures. The vapour density indicates that the vapour is composed of Шаблон:Chem2 molecules up to about 800 °C. Above that temperature, dissociation into [[diphosphorus|Шаблон:Chem2]] molecules occurs.

It ignites spontaneously in air at about Шаблон:Convert, and at much lower temperatures if finely divided (due to melting-point depression). Phosphorus reacts with oxygen, usually forming two oxides depending on the amount of available oxygen: Шаблон:Chem2 (phosphorus trioxide) when reacted with a limited supply of oxygen, and Шаблон:Chem2 when reacted with excess oxygen. On rare occasions, Шаблон:Chem2, Шаблон:Chem2, and Шаблон:Chem2 are also formed, but in small amounts. This combustion gives phosphorus(V) oxide:

Шаблон:Chem2

Because of this property, white phosphorus is used as a weapon.

Non-existence of cubic-Шаблон:Chem2

Although white phosphorus converts to the thermodynamically more stable red allotrope, the formation of the cubic-Шаблон:Chem2 molecule is not observed in the condensed phase. Analogs of this hypothetical molecule have been prepared from phosphaalkynes.[6] White phosphorus in the gaseous state and as waxy solid consists of reactive Шаблон:Chem2 molecules.

Red phosphorus

Файл:Phosphor rot.jpg
Red phosphorus
Файл:Red phosphorus.png
Red phosphorus structure

Red phosphorus may be formed by heating white phosphorus to Шаблон:Convert in the absence of air or by exposing white phosphorus to sunlight. Red phosphorus exists as an amorphous network. Upon further heating, the amorphous red phosphorus crystallizes. Bulk red phosphorus does not ignite in air at temperatures below Шаблон:Convert, whereas pieces of white phosphorus ignite at about Шаблон:Convert.

Under standard conditions it is more stable than white phosphorus, but less stable than the thermodynamically stable black phosphorus. The standard enthalpy of formation of red phosphorus is −17.6 kJ/mol.[1] Red phosphorus is kinetically most stable.

It was first presented by Anton von Schrötter before the Vienna Academy of Sciences on December 9, 1847, although others had doubtlessly had this substance in their hands before, such as Berzelius.[7]

Applications

Red phosphorus can be used as a very effective flame retardant, especially in thermoplastics (e.g. polyamide) and thermosets (e.g. epoxy resins or polyurethanes). The flame retarding effect is based on the formation of polyphosphoric acid. Together with the organic polymer material, these acids create a char that prevents the propagation of the flames. The safety risks associated with phosphine generation and friction sensitivity of red phosphorus can be effectively minimized by stabilization and micro-encapsulation. For easier handling, red phosphorus is often used in form of dispersions or masterbatches in various carrier systems. However, for electronic/electrical systems, red phosphorus flame retardant has been effectively banned by major OEMs due to its tendency to induce premature failures.[8] One persistent problem is that red phosphorus in epoxy molding compounds induces elevated leakage current in semiconductor devices.[9] Another problem was acceleration of hydrolysis reactions in PBT insulating material.[10]

Red phosphorus can also be used in the illicit production of methamphetamine and Krokodil.

Red phosphorus can be used as an elemental photocatalyst for hydrogen formation from the water.[11] They display a steady hydrogen evolution rates of 633 μmol/(h⋅g) by the formation of small-sized fibrous phosphorus.[12]

Violet or Hittorf's phosphorus

Файл:Phosphor-rot-violett.jpg
Violet phosphorus (right) by a sample of red phosphorus (left)
Файл:Violetter Phosphor.svg
Violet phosphorus structure
Файл:Hittorf's violet phosphorus.png
Hitorff's phosphorus structure

Monoclinic phosphorus, or violet phosphorus, is also known as Hittorf's metallic phosphorus.[13][14] In 1865, Johann Wilhelm Hittorf heated red phosphorus in a sealed tube at 530 °C. The upper part of the tube was kept at 444 °C. Brilliant opaque monoclinic, or rhombohedral, crystals sublimed as a result. Violet phosphorus can also be prepared by dissolving white phosphorus in molten lead in a sealed tube at 500 °C for 18 hours. Upon slow cooling, Hittorf's allotrope crystallises out. The crystals can be revealed by dissolving the lead in dilute nitric acid followed by boiling in concentrated hydrochloric acid.[15] In addition, a fibrous form exists with similar phosphorus cages. The lattice structure of violet phosphorus was presented by Thurn and Krebs in 1969.[16] Imaginary frequencies, indicating the irrationalities or instabilities of the structure, were obtained for the reported violet structure from 1969.[17] The single crystal of violet phosphorus was also produced. The lattice structure of violet phosphorus has been obtained by single‐crystal x‐ray diffraction to be monoclinic with space group of P2/n (13) (a = 9.210, b = 9.128, c = 21.893 Å, β = 97.776°, CSD-1935087). The optical band gap of the violet phosphorus was measured by diffuse reflectance spectroscopy to be around 1.7 eV. The thermal decomposition temperature was 52 °C higher than its black phosphorus counterpart. The violet phosphorene was easily obtained from both mechanical and solution exfoliation.

Reactions of violet phosphorus

Violet phosphorus does not ignite in air until heated to 300 °C and is insoluble in all solvents. It is not attacked by alkali and only slowly reacts with halogens. It can be oxidised by nitric acid to phosphoric acid.

If it is heated in an atmosphere of inert gas, for example nitrogen or carbon dioxide, it sublimes and the vapour condenses as white phosphorus. If it is heated in a vacuum and the vapour condensed rapidly, violet phosphorus is obtained. It would appear that violet phosphorus is a polymer of high relative molecular mass, which on heating breaks down into Шаблон:Chem2 molecules. On cooling, these would normally dimerize to give Шаблон:Chem2 molecules (i.e. white phosphorus) but, in a vacuum, they link up again to form the polymeric violet allotrope.

Black phosphorus

Файл:Black Phosphorus Ampoule.jpg
Black phosphorus ampoule
Файл:Black phosphorus.png
Black phosphorus
Файл:Schwarzer Phosphor.svg
Black phosphorus structure

Black phosphorus is the thermodynamically stable form of phosphorus at room temperature and pressure, with a heat of formation of −39.3 kJ/mol (relative to white phosphorus which is defined as the standard state).[1] It was first synthesized by heating white phosphorus under high pressures (12,000 atmospheres) in 1914. As a 2D material, in appearance, properties, and structure, black phosphorus is very much like graphite with both being black and flaky, a conductor of electricity, and having puckered sheets of linked atoms.[18]

Black phosphorus has an orthorhombic pleated honeycomb structure and is the least reactive allotrope, a result of its lattice of interlinked six-membered rings where each atom is bonded to three other atoms.[19][20] In this structure, each phosphorus atom has five outer shell electrons.[21] Black and red phosphorus can also take a cubic crystal lattice structure.[22] The first high-pressure synthesis of black phosphorus crystals was made by the Nobel prize winner Percy Williams Bridgman in 1914.[23] Metal salts catalyze the synthesis of black phosphorus.[24]

Black phosphorus based sensors exhibit several superior qualities over traditional materials used in piezoelectric or resistive sensors. Characterized by its unique puckered honeycomb lattice structure, black phosphorus provides exceptional carrier mobility. This property ensures its high sensitivity and mechanical resilience, making it an intriguing candidate for sensor technology.[25][26]

Phosphorene

Шаблон:Main The similarities to graphite also include the possibility of scotch-tape delamination (exfoliation), resulting in phosphorene, a graphene-like 2D material with excellent charge transport properties, thermal transport properties and optical properties. Distinguishing features of scientific interest include a thickness dependent band-gap, which is not found in graphene.[27] This, combined with a high on/off ratio of ~105 makes phosphorene a promising candidate for field-effect transistors (FETs).[28] The tunable bandgap also suggests promising applications in mid-infrared photodetectors and LEDs.[29][30] Exfoliated black phosphorus sublimes at 400 °C in vacuum.[31] It gradually oxidizes when exposed to water in the presence of oxygen, which is a concern when contemplating it as a material for the manufacture of transistors, for example.[32][33] Exfoliated black phosphorus is an emerging anode material in the battery community, showing high stability and lithium storage.[34]

Ring-shaped phosphorus

Ring-shaped phosphorus was theoretically predicted in 2007.[35] The ring-shaped phosphorus was self-assembled inside evacuated multi-walled carbon nanotubes with inner diameters of 5–8 nm using a vapor encapsulation method. A ring with a diameter of 5.30 nm, consisting of 23 Шаблон:Chem2 and 23 Шаблон:Chem2 units with a total of 230 P atoms, was observed inside a multi-walled carbon nanotube with an inner diameter of 5.90 nm in atomic scale. The distance between neighboring rings is 6.4 Å.[36]

The [[Hexaphosphabenzene|Шаблон:Chem2]] ring shaped molecule is not stable in isolation.

Blue phosphorus

Single-layer blue phosphorus was first produced in 2016 by the method of molecular beam epitaxy from black phosphorus as precursor.[37]

Diphosphorus

Шаблон:Main

Файл:Diphosphorus-3D-vdW.png
Structure of diphosphorus
Файл:Diphosphorus-2D-dimensions.png
Diphosphorus molecule

The diphosphorus allotrope (Шаблон:Chem2) can normally be obtained only under extreme conditions (for example, from Шаблон:Chem2 at 1100 kelvin). In 2006, the diatomic molecule was generated in homogeneous solution under normal conditions with the use of transition metal complexes (for example, tungsten and niobium).[38]

Diphosphorus is the gaseous form of phosphorus, and the thermodynamically stable form between 1200 °C and 2000 °C. The dissociation of tetraphosphorus (Шаблон:Chem2) begins at lower temperature: the percentage of Шаблон:Chem2 at 800 °C is ≈ 1%. At temperatures above about 2000 °C, the diphosphorus molecule begins to dissociate into atomic phosphorus.

Phosphorus nanorods

Шаблон:Chem2 nanorod polymers were isolated from CuI-P complexes using low temperature treatment.[39]

Red/brown phosphorus was shown to be stable in air for several weeks and have properties distinct from those of red phosphorus. Electron microscopy showed that red/brown phosphorus forms long, parallel nanorods with a diameter between 3.4 Å and 4.7 Å.[39]

Properties

Properties of some allotropes of phosphorus[40][41]
Form white(α) white(β) violet black
Symmetry Body-centred cubic Triclinic Monoclinic Orthorhombic
Pearson symbol aP24 mP84 oS8
Space group IШаблон:Overline3m PШаблон:Overline No.2 P2/c No.13 Cmca No.64
Density Шаблон:Nobold 1.828 1.88 2.36 2.69
Bandgap Шаблон:Nobold 2.1 1.5 0.34
Refractive index 1.8244 2.6 2.4

See also

References

Шаблон:Reflist

External links

White phosphorus

  1. 1,0 1,1 1,2 Шаблон:Housecroft2nd
  2. Шаблон:Cite book
  3. Шаблон:Cite web
  4. Шаблон:Cite web
  5. Threlfall, R.E., (1951). 100 years of Phosphorus Making: 1851–1951. Oldbury: Albright and Wilson Ltd
  6. Шаблон:Cite journal
  7. Шаблон:Cite journal
  8. Шаблон:Cite web
  9. Craig Hillman, Red Phosphorus Induced Failures in Encapsulated Circuits, https://www.dfrsolutions.com/hubfs/Resources/services/Red-Phosphorus-Induced-Failures-in-Encapsulated-Circuits.pdf?t=1513022462214
  10. Dock Brown, The Return of the Red Retardant, SMTAI 2015, https://www.dfrsolutions.com/hubfs/Resources/services/The-Return-of-the-Red-Retardant.pdf?t=1513022462214
  11. Applied Catalysis B: Environmental, 2012, 111–112, 409–414.
  12. Angewandte Chemie International Edition, 2016, 55, 9580–9585.
  13. Шаблон:Cite web
  14. Monoclinic phosphorus formed from vapor in the presence of an alkali metal Шаблон:US patent
  15. Шаблон:Cite journal
  16. Шаблон:Cite journal
  17. Шаблон:Cite journal
  18. Шаблон:Cite journal
  19. Шаблон:Cite journal
  20. Шаблон:Cite journal
  21. Шаблон:Cite journal
  22. Шаблон:Cite journal
  23. Шаблон:Cite journal
  24. Шаблон:Cite journal
  25. Шаблон:Cite journal
  26. Шаблон:Cite web
  27. Шаблон:Cite web
  28. Шаблон:Cite journal
  29. Шаблон:Cite journal
  30. Шаблон:Cite journal
  31. Шаблон:Cite journal
  32. Шаблон:Cite journal
  33. Шаблон:Cite journal
  34. Шаблон:Cite journal
  35. Шаблон:Cite journal
  36. Шаблон:Cite journal
  37. Шаблон:Cite journal
  38. Шаблон:Cite journal
  39. 39,0 39,1 Шаблон:Cite journal
  40. Шаблон:Cite book
  41. Шаблон:Cite book