Английская Википедия:Alpha scale

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Файл:Minor third on C.png
Minor third (just: 315.64 cents Шаблон:Audio,
12 TET: 300 cents Шаблон:Audio,
Alpha scale: 312 cents Шаблон:Audio

Шаблон:Multiple image

The Шаблон:Mvar (alpha) scale is a non-octave-repeating musical scale invented by Wendy Carlos and first used on her album Beauty in the Beast (1986). It is derived from approximating just intervals using multiples of a single interval, but without requiring (as temperaments normally do) an octave (2:1). It may be approximated by dividing the perfect fifth (3:2) into nine equal steps, with frequency ratio <math>\ \left( \tfrac{\ 3\ }{ 2 } \right)^{\tfrac{1}{9} }\ ,</math>[1] or by dividing the minor third (6:5) into four frequency ratio steps of <math>\ \left( \tfrac{\ 6\ }{ 5 } \right)^{\tfrac{1}{4} } ~.</math>[1][2][3]

The size of this scale step may also be precisely derived from using 9:5 Шаблон:BigBШаблон:Music, 1017.60 cents, Шаблон:AudioШаблон:Big to approximate the interval Шаблон:Math Шаблон:BigEШаблон:Music, 315.64 cents, Шаблон:Audio Шаблон:Big.[4]

Carlos' Шаблон:Big (alpha) scale arises from ... taking a value for the scale degree so that nine of them approximate a 3:2 perfect fifth, five of them approximate a 5:4 major third, and four of them approximate a 6:5 minor third. In order to make the approximation as good as possible we minimize the mean square deviation.[4]

The formula below finds the minimum by setting the derivative of the mean square deviation with respect to the scale step size to 0 .

<math>\ \frac{\ 9\ \log_2\left( \frac{\ 3\ }{ 2 } \right) + 5\log_2\left( \frac{\ 5\ }{ 4 } \right) + 4\ \log_2\left( \frac{\ 6\ }{ 5 } \right)\ }{\ 9^2 + 5^2 + 4^2\ } \approx 0.06497082462\ </math>


and <math>\ 0.06497082462 \times 1200 = 77.964989544\ </math> (Шаблон:Audio)

At 78 cents per step, this totals approximately 15.385 steps per octave, however, more accurately, the alpha scale step is 77.965 cents and there are 15.3915 cents per octave.[4][5]

Though it does not have a perfect octave, the alpha scale produces "wonderful triads," (Шаблон:Audio and Шаблон:Audio) and the beta scale has similar properties but the sevenths are more in tune.[2] However, the alpha scale has

"excellent harmonic seventh chords ... using the [octave] inversion of Шаблон:Sfrac, i.e., [[septimal whole tone|Шаблон:Sfrac]] [[[:Шаблон:Audio]]]."[1]
interval name size
(steps)
size
(cents)
just ratio just
(cents)
error
septimal major second 3 233.89 8:7 231.17 +2.72
minor third 4 311.86 6:5 315.64 −3.78
major third 5 389.82 5:4 386.31 +3.51
perfect fifth 9 701.68 3:2 701.96 −0.27
harmonic seventh octave−3 966.11 7:4 968.83 −2.72
octave 15 1169.47 2:1 1200.00 −30.53
octave 16 1247.44 2:1 1200.00 +47.44

See also

References

Шаблон:Reflist

Шаблон:Microtonal music Шаблон:Musical tuning Шаблон:Scales Шаблон:Wendy Carlos


Шаблон:Music-theory-stub