Английская Википедия:Aluminium alloy

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Use dmy dates

Файл:RTS-2b.JPG
Welded aluminium alloy bicycle frame, made in the 1990s.

An aluminium alloy (UK/IUPAC) or aluminum alloy (NA; see spelling differences) is an alloy in which aluminium (Al) is the predominant metal. The typical alloying elements are copper, magnesium, manganese, silicon, tin, nickel and zinc. There are two principal classifications, namely casting alloys and wrought alloys, both of which are further subdivided into the categories heat-treatable and non-heat-treatable. About 85% of aluminium is used for wrought products, for example rolled plate, foils and extrusions. Cast aluminium alloys yield cost-effective products due to the low melting point, although they generally have lower tensile strengths than wrought alloys. The most important cast aluminium alloy system is Al–Si, where the high levels of silicon (4–13%) contribute to give good casting characteristics. Aluminium alloys are widely used in engineering structures and components where light weight or corrosion resistance is required.[1]

Alloys composed mostly of aluminium have been very important in aerospace manufacturing since the introduction of metal-skinned aircraft. Aluminium–magnesium alloys are both lighter than other aluminium alloys and much less flammable than other alloys that contain a very high percentage of magnesium.[2]

Aluminium alloy surfaces will develop a white, protective layer of aluminium oxide if left unprotected by anodizing and/or correct painting procedures. In a wet environment, galvanic corrosion can occur when an aluminium alloy is placed in electrical contact with other metals with more positive corrosion potentials than aluminium, and an electrolyte is present that allows ion exchange. Also referred to as dissimilar-metal corrosion, this process can occur as exfoliation or as intergranular corrosion. Aluminium alloys can be improperly heat treated, causing internal element separation which corrodes the metal from the inside out.Шаблон:Citation needed

Aluminium alloy compositions are registered with The Aluminum Association. Many organizations publish more specific standards for the manufacture of aluminium alloy, including the Society of Automotive Engineers standards organization, specifically its aerospace standards subgroups,[3] and ASTM International.

Engineering use & properties

Файл:Bootie bicycle frunt wheel balloon tyre bootiebike com.jpg
Aluminium alloy bicycle wheel. 1960s Bootie Folding Cycle

Aluminium alloys with a wide range of properties are used in engineering structures. Alloy systems are classified by a number system (ANSI) or by names indicating their main alloying constituents (DIN and ISO). Selecting the right alloy for a given application entails considerations of its tensile strength, density, ductility, formability, workability, weldability, and corrosion resistance, to name a few. A brief historical overview of alloys and manufacturing technologies is given in Ref.[4] Aluminium alloys are used extensively in aircraft due to their high strength-to-weight ratio. Pure aluminium metal is much too soft for such uses, and it does not have the high tensile strength that is needed for building airplanes and helicopters.

Aluminium alloys versus types of steel

Aluminium alloys typically have an elastic modulus of about 70 GPa, which is about one-third of the elastic modulus of steel alloys. Therefore, for a given load, a component or unit made of an aluminium alloy will experience a greater deformation in the elastic regime than a steel part of identical size and shape. With completely new metal products, the design choices are often governed by the choice of manufacturing technology. Extrusions are particularly important in this regard, owing to the ease with which aluminium alloys, particularly the Al-Mg-Si series, can be extruded to form complex profiles.

In general, stiffer and lighter designs can be achieved with aluminium alloy than is feasible with steels. For instance, consider the bending of a thin-walled tube: the second moment of area is inversely related to the stress in the tube wall, i.e. stresses are lower for larger values. The second moment of area is proportional to the cube of the radius times the wall thickness, thus increasing the radius (and weight) by 26% will lead to a halving of the wall stress. For this reason, bicycle frames made of aluminium alloys make use of larger tube diameters than steel or titanium in order to yield the desired stiffness and strength. In automotive engineering, cars made of aluminium alloys employ space frames made of extruded profiles to ensure rigidity. This represents a radical change from the common approach for current steel car design, which depend on the body shells for stiffness, known as unibody design.

Aluminium alloys are widely used in automotive engines, particularly in cylinder blocks and crankcases due to the weight savings that are possible. Since aluminium alloys are susceptible to warping at elevated temperatures, the cooling system of such engines is critical. Manufacturing techniques and metallurgical advancements have also been instrumental for the successful application in automotive engines. In the 1960s, the aluminium cylinder heads of the Corvair earned a reputation for failure and stripping of threads, which is not seen in current aluminium cylinder heads.

An important structural limitation of aluminium alloys is their lower fatigue strength compared to steel. In controlled laboratory conditions, steels display a fatigue limit, which is the stress amplitude below which no failures occur – the metal does not continue to weaken with extended stress cycles. Aluminium alloys do not have this lower fatigue limit and will continue to weaken with continued stress cycles. Aluminium alloys are therefore sparsely used in parts that require high fatigue strength in the high cycle regime (more than 107 stress cycles).

Heat sensitivity considerations

Often, the metal's sensitivity to heat must also be considered. Even a relatively routine workshop procedure involving heating is complicated by the fact that aluminium, unlike steel, will melt without first glowing red. Forming operations where a blow torch is used can reverse or remove the effects of heat treatment. No visual signs reveal how the material is internally damaged. Much like welding heat treated, high strength link chain, all strength is now lost by heat of the torch. The chain is dangerous and must be discarded.Шаблон:Citation needed

Aluminium is subject to internal stresses and strains. Sometimes years later, improperly welded aluminium bicycle frames may gradually twist out of alignment from the stresses of the welding process. Thus, the aerospace industry avoids heat altogether by joining parts with rivets of like metal composition, other fasteners, or adhesives.

Stresses in overheated aluminium can be relieved by heat-treating the parts in an oven and gradually cooling it—in effect annealing the stresses. Yet these parts may still become distorted, so that heat-treating of welded bicycle frames, for instance, can result in a significant fraction becoming misaligned. If the misalignment is not too severe, the cooled parts may be bent into alignment. If the frame is properly designed for rigidity (see above), that bending will require enormous force.Шаблон:Citation needed

Aluminium's intolerance to high temperatures has not precluded its use in rocketry; even for use in constructing combustion chambers where gases can reach 3500 K. The Agena upper stage engine used a regeneratively cooled aluminium design for some parts of the nozzle, including the thermally critical throat region; in fact the extremely high thermal conductivity of aluminium prevented the throat from reaching the melting point even under massive heat flux, resulting in a reliable, lightweight component.

Household wiring

Шаблон:Main article

Because of its high conductivity and relatively low price compared with copper in the 1960s, aluminium was introduced at that time for household electrical wiring in North America, even though many fixtures had not been designed to accept aluminium wire. But the new use brought some problems:

  • The greater coefficient of thermal expansion of aluminium causes the wire to expand and contract relative to the dissimilar metal screw connection, eventually loosening the connection.
  • Pure aluminium has a tendency to creep under steady sustained pressure (to a greater degree as the temperature rises), again loosening the connection.
  • Galvanic corrosion from the dissimilar metals increases the electrical resistance of the connection.

All of this resulted in overheated and loose connections, and this in turn resulted in some fires. Builders then became wary of using the wire, and many jurisdictions outlawed its use in very small sizes, in new construction. Yet newer fixtures eventually were introduced with connections designed to avoid loosening and overheating. At first they were marked "Al/Cu", but they now bear a "CO/ALR" coding.

Another way to forestall the heating problem is to crimp the short "pigtail" of copper wire. A properly done high-pressure crimp by the proper tool is tight enough to reduce any thermal expansion of the aluminium. Today, new alloys, designs, and methods are used for aluminium wiring in combination with aluminium terminations.

Alloy designations

Wrought and cast aluminium alloys use different identification systems. Wrought aluminium is identified with a four digit number which identifies the alloying elements.

Cast aluminium alloys use a four to five digit number with a decimal point. The digit in the hundreds place indicates the alloying elements, while the digit after the decimal point indicates the form (cast shape or ingot).

Temper designation

The temper designation follows the cast or wrought designation number with a dash, a letter, and potentially a one to three digit number, e.g. 6061-T6. The definitions for the tempers are:[5][6]

-F : As fabricated
-H : Strain hardened (cold worked) with or without thermal treatment

-H1 : Strain hardened without thermal treatment
-H2 : Strain hardened and partially annealed
-H3 : Strain hardened and stabilized by low temperature heating
Second digit : A second digit denotes the degree of hardness
-HX2 = 1/4 hard
-HX4 = 1/2 hard
-HX6 = 3/4 hard
-HX8 = full hard
-HX9 = extra hard

-O : Full soft (annealed)
-T : Heat treated to produce stable tempers

-T1 : Cooled from hot working and naturally aged (at room temperature)
-T2 : Cooled from hot working, cold-worked, and naturally aged
-T3 : Solution heat treated and cold worked
-T4 : Solution heat treated and naturally aged
-T5 : Cooled from hot working and artificially aged (at elevated temperature)
-T51 : Stress relieved by stretching
-T510 : No further straightening after stretching
-T511 : Minor straightening after stretching
-T52 : Stress relieved by thermal treatment
-T6 : Solution heat treated and artificially aged
-T651 : Solution heat treated, stress relieved by stretching and artificially aged
-T7 : Solution heat treated and stabilized
-T8 : Solution heat treated, cold worked, and artificially aged
-T9 : Solution heat treated, artificially aged, and cold worked
-T10 : Cooled from hot working, cold-worked, and artificially aged

-W : Solution heat treated only

Note: -W is a relatively soft intermediary designation that applies after heat treat and before aging is completed. The -W condition can be extended at extremely low temperatures but not indefinitely and depending on the material will typically last no longer than 15 minutes at ambient temperatures.

Wrought alloys

The International Alloy Designation System is the most widely accepted naming scheme for wrought alloys. Each alloy is given a four-digit number, where the first digit indicates the major alloying elements, the second — if different from 0 — indicates a variation of the alloy, and the third and fourth digits identify the specific alloy in the series. For example, in alloy 3105, the number 3 indicates the alloy is in the manganese series, 1 indicates the first modification of alloy 3005, and finally 05 identifies it in the 3000 series.[7]

1000 series (essentially pure)

1000 series are essentially pure aluminium with a minimum 99% aluminium content by weight and can be work hardened.

1000 series aluminium alloy nominal composition (% weight) and applications
Alloy Al contents Alloying elements Uses and refs
1050 99.5 Drawn tube, chemical equipment
1060 99.6 Universal
1070 99.7 Thick-wall drawn tube
1100 99.0 Cu 0.1 Universal, holloware
1145 99.45 Sheet, plate, foil
1199 99.99 Foil[8]
1200 99.0 max (Si + Fe) 1.0 max; Cu 0.05 max; Mn 0.05 max; Zn 0.10 max; Ti 0.05 max; others 0.05 (each) .015 (total) [9]
1230 (VAD23)# Si 0.3; Fe 0.3; Cu 4.8–5.8; Mn 0.4–0.8; Mg 0.05; Zn 0.1; Ti 0.15; Li 0.9–1.4; Cd 0.1–0.25 Tu-144 aircraft[10]
1350 99.5 Electrical conductors
1370 99.7 Electrical conductors
1420# 92.9 Mg 5.0; Li 2.0; Zr 0.1 Aerospace
1421# 92.9 Mg 5.0; Li 2.0; Mn 0.2; Sc 0.2; Zr 0.1 Aerospace[11]
1424# Si 0.08; Fe 0.1; Mn 0.1–0.25; Mg 4.7–5.2; Zn 0.4–0.7; Li 1.5–1.8; Zr 0.07–0.1; Be 0.02–0.2; Sc 0.05–0.08; Na 0.0015 [10]
1430# Si 0.1; Fe 0.15; Cu 1.4–1.8; Mn 0.3–0.5; Mg 2.3–3.0; Zn 0.5–0.7; Ti 0.01–0.1; Li 1.5–1.9; Zr 0.08–0.14; Be 0.02–0.1; Sc 0.01–0.1; Na 0.003; Ce 0.2–0.4; Y 0.05–0.1 [10]
1440# Si 0.02–0.1; Fe 0.03–0.15; Cu 1.2–1.9; Mn 0.05; Mg 0.6–1.1; Cr 0.05; Ti 0.02–0.1; Li 2.1–2.6; Zr 0.10–0.2; Be 0.05–0.2; Na 0.003 [10]
1441# Si 0.08; Fe 0.12; Cu 1.5–1.8; Mn 0.001–0.010; Mg 0.7–1.1; Ti 0.01–0.07; Ni 0.02–0.10; Li 1.8–2.1; Zr 0.04–0.16; Be 0.02–0.20 Be-103 and Be-200 hydroplanes[10]
1441K# Si 0.08; Fe 0.12; Cu 1.3–1.5; Mn 0.001–0.010; Mg 0.7–1.1; Ti 0.01–0.07; Ni 0.01–0.15; Li 1.8–2.1; Zr 0.04–0.16; Be 0.002–0.01 [10]
1445# Si 0.08; Fe 0.12; Cu 1.3–1.5; Mn 0.001–0.010; Mg 0.7–1.1; Ti 0.01–0.1; Ni 0.01–0.15; Li 1.6–1.9; Zr 0.04–0.16; Be 0.002–0.01; Sc 0.005–0.001; Ag 0.05–0.15; Ca 0.005–0.04; Na 0.0015 [10]
1450# Si 0.1; Fe 0.15; Cu 2.6–3.3; Mn 0.1; Mg 0.1; Cr 0.05; Zn 0.25; Ti 0.01–0.06; Li 1.8–2.3; Zr 0.08–0.14; Be 0.008–0.1; Na 0.002; Ce 0.005–0.05 An-124 and An-225 aircraft[10]
1460# Si 0.1; Fe 0.03–0.15; Cu 2.6–3.3; Mg 0.05; Ti 0.01–0.05; Li 2.0–2.4; Zr 0.08–0.13; Na 0.002; Sc 0.05–0.14; B 0.0002–0.0003 Tu-156 aircraft[10]
V-1461# Si 0.8; Fe 0.01–0.1; Cu 2.5–2.95; Mn 0.2–0.6; Mg 0.05–0.6; Cr 0.01–0.05; Zn 0.2–0.8; Ti 0.05; Ni 0.05–0.15; Li 1.5–1.95; Zr 0.05–0.12; Be 0.0001–0.02; Sc 0.05–0.10; Ca 0.001–0.05; Na 0.0015 [10]
V-1464# Si 0.03–0.08; Fe 0.03–0.10; Cu 3.25–3.45; Mn 0.20–0.30; Mg 0.35–0.45; Ti 0.01–0.03; Li 1.55–1.70; Zr 0.08–0.10; Sc 0.08–0.10; Be 0.0003–0.02; Na 0.0005 [10]
V-1469# Si 0.1; Fe 0.12; Cu 3.2–4.5; Mn 0.003–0.5; Mg 0.1–0.5; Li 1.0–1.5; Zr 0.04–0.20; Sc 0.04–0.15; Ag 0.15–0.6 [10]

# Not an International Alloy Designation System name

2000 series (copper)

2000 series are alloyed with copper, can be precipitation hardened to strengths comparable to steel. Formerly referred to as duralumin, they were once the most common aerospace alloys, but were susceptible to stress corrosion cracking and are increasingly replaced by 7000 series in new designs.

2000 series aluminium alloy nominal composition (% weight) and applications
Alloy Al contents Alloying elements Uses and refs
2004 93.6 Cu 6.0; Zr 0.4 Aerospace
2011 93.7 Cu 5.5; Bi 0.4; Pb 0.4 Universal
2014 93.5 Cu 4.4; Si 0.8; Mn 0.8; Mg 0.5 Universal
2017 94.2 Cu 4.0; Si 0.5; Mn 0.7; Mg 0.6 Aerospace
2020 93.4 Cu 4.5; Li 1.3; Mn 0.55; Cd 0.25 Aerospace
2024 93.5 Cu 4.4; Mn 0.6; Mg 1.5 Universal, aerospace[12]
2029 94.6 Cu 3.6; Mn 0.3; Mg 1.0; Ag 0.4; Zr 0.1 Alclad sheet, aerospace[13]
2036 96.7 Cu 2.6; Mn 0.25; Mg 0.45 Sheet
2048 94.8 Cu 3.3; Mn 0.4; Mg 1.5 Sheet, plate
2055 93.5 Cu 3.7; Zn 0.5; Li 1.1; Ag 0.4;Mn 0.2; Mg 0.3; Zr 0.1 Aerospace extrusions,[14]
2080 94.0 Mg 3.7; Zn 1.85; Cr 0.2; Li 0.2 Aerospace
2090 95.0 Cu 2.7; Li 2.2; Zr 0.12 Aerospace
2091 94.3 Cu 2.1; Li 2.0; Mg 1.5; Zr 0.1 Aerospace, cryogenics
2094 Si 0.12; Fe 0.15; Cu 4.4–5.2; Mn 0.25; Mg 0.25–0.8; Zn 0.25; Ti 0.10; Ag 0.25–0.6; Li 0.7–1.4; Zr 0.04–0.18 [10]
2095 93.6 Cu 4.2; Li 1.3; Mg 0.4; Ag 0.4; Zr 0.1 Aerospace
2097 Si 0.12; Fe 0.15; Cu 2.5–3.1; Mn 0.10–0.6; Mg 0.35; Zn 0.35; Ti 0.15; Li 1.2–1.8; Zr 0.08–0.15 [10]
2098 Si 0.12; Fe 0.15; Cu 2.3–3.8; Mn 0.35; Mg 0.25–0.8; Zn 0.35; Ti 0.10; Ag 0.25–0.6; Li 2.4–2.8; Zr 0.04–0.18 [10]
2099 94.3 Cu 2.53; Mn 0.3; Mg 0.25; Li 1.75; Zn 0.75; Zr 0.09 Aerospace[15]
2124 93.5 Cu 4.4; Mn 0.6; Mg 1.5 Plate
2195 93.5 Cu 4.0; Mn 0.5; Mg 0.45; Li 1.0; Ag 0.4; Zr 0.12 aerospace,[16][17] Space Shuttle Super Lightweight external tank,[18] and the SpaceX Falcon 9[19] and Falcon 1e second stage launch vehicles.[20]
2196 Si 0.12; Fe 0.15; Cu 2.5–3.3; Mn 0.35; Mg 0.25–0.8; Zn 0.35; Ti 0.10; Ag 0.25–0.6; Li 1.4–2.1; Zr 0.08–0.16[10] Extrusion
2197 Si 0.10; Fe 0.10; Cu 2.5–3.1; Mn 0.10–0.50; Mg 0.25; Zn 0.05; Ti 0.12; Li 1.3–1.7; Zr 0.08–0.15 [10]
2198 Sheet
2218 92.2 Cu 4.0; Mg 1.5; Fe 1.0; Si 0.9; Zn 0.25; Mn 0.2 Forgings, aircraft engine cylinders[21]
2219 93.0 Cu 6.3; Mn 0.3;Ti 0.06; V 0.1; Zr 0.18 Universal, Space Shuttle Standard Weight external tank
2297 Si 0.10; Fe 0.10; Cu 2.5–3.1; Mn 0.10–0.50; Mg 0.25; Zn 0.05; Ti 0.12; Li 1.1–1.7; Zr 0.08–0.15 [10]
2397 Si 0.10; Fe 0.10; Cu 2.5–3.1; Mn 0.10–0.50; Mg 0.25; Zn 0.05–0.15; Ti 0.12; Li 1.1–1.7; Zr 0.08–0.15 [10]
2224&2324 93.8 Cu 4.1; Mn 0.6; Mg 1.5 Plate[22]
2319 93.0 Cu 6.3; Mn 0.3; Ti 0.15; V 0.1; Zr 0.18 Bar and wire
2519 93.0 Cu 5.8; Mg 0.2; Ti 0.15; V 0.1; Zr 0.2 Aerospace armour plate
2524 93.8 Cu 4.2; Mn 0.6; Mg 1.4 Plate, sheet[23]
2618 93.7 Cu 2.3; Si 0.18; Mg 1.6; Ti 0.07; Fe 1.1; Ni 1.0 Forgings

3000 series (manganese)

3000 series are alloyed with manganese, and can be work hardened.

3000 series aluminium alloy nominal composition (% weight) and applications
Alloy Al contents Alloying elements Uses and refs
3003 98.6 Mn 1.5; Cu 0.12 Universal, sheet, rigid foil containers, signs, decorative
3004 97.8 Mn 1.2; Mg 1 Universal, beverage cans[24]
3005 98.5 Mn 1.0; Mg 0.5 Work-hardened
3102 99.8 Mn 0.2 Work-hardened[25]
3103&3303 98.8 Mn 1.2 Work-hardened
3105 97.8 Mn 0.55; Mg 0.5 Sheet
3203 98.8 Mn 1.2 Sheet, high strength foil

4000 series (silicon)

4000 series are alloyed with silicon. Variations of aluminium–silicon alloys intended for casting (and therefore not included in 4000 series) are also known as silumin.

4000 series aluminium alloy nominal composition (% weight) and applications
Alloy Al contents Alloying elements Uses and refs
4006 98.3 Si 1.0; Fe 0.65 Work-hardened or aged
4007 96.3 Si 1.4; Mn 1.2; Fe 0.7; Ni 0.3; Cr 0.1 Work-hardened
4015 96.8 Si 2.0; Mn 1.0; Mg 0.2 Work-hardened
4032 85 Si 12.2; Cu 0.9; Mg 1; Ni 0.9; Forgings
4043 94.8 Si 5.2 Rod, Welding Filler, Brazing Filler
4047 85.5 Si 12.0; Fe 0.8; Cu 0.3; Zn 0.2; Mn 0.15; Mg 0.1 Sheet, cladding, fillers[26]
4543 93.7 Si 6.0; Mg 0.3 architectural extrusions
4643 93.7 Si 4.1; Fe 0.8; Mg 0.2; Zn 0.1 Welding filler for 6000 series

5000 series (magnesium)

5000 series are alloyed with magnesium, and offer superb corrosion resistance, making them suitable for marine applications. 5083 alloy has the highest strength of non-heat-treated alloys. Most 5000 series alloys include manganese as well.

5000 series aluminium alloy nominal composition (% weight) and applications
Alloy Al contents Alloying elements Uses and refs
5005 & 5657 99.2 Mg 0.8 Sheet, plate, rod
5010 99.3 Mg 0.5; Mn 0.2;
5019 94.7 Mg 5.0; Mn 0.25;
5024 94.5 Mg 4.6; Mn 0.6; Zr 0.1; Sc 0.2 Extrusions, aerospace[27]
5026 93.9 Mg 4.5; Mn 1; Si 0.9; Fe 0.4; Cu 0.3
5050 98.6 Mg 1.4 Universal
5052 & 5652 97.2 Mg 2.5; Cr 0.25 Universal, aerospace, marine
5056 94.8 Mg 5.0; Mn 0.12; Cr 0.12 Foil, rod, rivets
5059 93.5 Mg 5.0; Mn 0.8; Zn 0.6; Zr 0.12 rocket cryogenic tanks
5083 94.8 Mg 4.4; Mn 0.7; Cr 0.15 Universal, welding, marine
5086 95.4 Mg 4.0; Mn 0.4; Cr 0.15 Universal, welding, marine
5154 & 5254 96.2 Mg 3.5; Cr 0.25; Universal, rivets[28]
5182 95.2 Mg 4.5; Mn 0.35; Sheet
5252 97.5 Mg 2.5; Sheet
5356 94.6 Mg 5.0; Mn 0.12; Cr 0.12; Ti 0.13 Rod, MIG wire
5454 96.4 Mg 2.7; Mn 0.8; Cr 0.12 Universal
5456 94 Mg 5.1; Mn 0.8; Cr 0.12 Universal
5457 98.7 Mg 1.0; Mn 0.2; Cu 0.1 Sheet, automobile trim[29]
5557 99.1 Mg 0.6; Mn 0.2; Cu 0.1 Sheet, automobile trim[30]
5754 95.8 Mg 3.1; Mn 0.5; Cr 0.3 Sheet, Rod

6000 series (magnesium and silicon)

6000 series are alloyed with magnesium and silicon. They are easy to machine, are weldable, and can be precipitation hardened, but not to the high strengths that 2000 and 7000 can reach. 6061 alloy is one of the most commonly used general-purpose aluminium alloys.

6000 series aluminium alloy nominal composition (% weight) and applications
Alloy Al contents Alloying elements Uses and refs
6005 98.7 Si 0.8; Mg 0.5 Extrusions, angles
6005A 96.5 Si 0.6; Mg 0.5; Cu 0.3; Cr 0.3; Fe 0.35
6009 97.7 Si 0.8; Mg 0.6; Mn 0.5; Cu 0.35 Sheet
6010 97.3 Si 1.0; Mg 0.7; Mn 0.5; Cu 0.35 Sheet
6013 97.05 Si 0.8; Mg 1.0; Mn 0.35; Cu 0.8 Plate, aerospace, smartphone cases[31][32]
6022 97.9 Si 1.1; Mg 0.6; Mn 0.05; Cu 0.05; Fe 0.3 Sheet, automotive[33]
6060 98.9 Si 0.4; Mg 0.5; Fe 0.2 Heat-treatable
6061 97.9 Si 0.6; Mg 1.0; Cu 0.25; Cr 0.2 Universal, structural, aerospace
6063 & 646g 98.9 Si 0.4; Mg 0.7 Universal, marine, decorative
6063A 98.7 Si 0.4; Mg 0.7; Fe 0.2 Heat-treatable
6065 97.1 Si 0.6; Mg 1.0; Cu 0.25; Bi 1.0 Heat-treatable
6066 95.7 Si 1.4; Mg 1.1; Mn 0.8; Cu 1.0 Universal
6070 96.8 Si 1.4; Mg 0.8; Mn 0.7; Cu 0.28 Extrusions
6081 98.1 Si 0.9; Mg 0.8; Mn 0.2 Heat-treatable
6082 97.5 Si 1.0; Mg 0.85; Mn 0.65 Heat-treatable
6101 98.9 Si 0.5; Mg 0.6 Extrusions
6105 98.6 Si 0.8; Mg 0.65 Heat-treatable
6111 98.4 Cu 0.7; Mg 0.75; Si 0.85 Precipitation hardening;[34] used for automotive paneling.[35][36] Corrosion resistance.
6113 96.8 Si 0.8; Mg 1.0; Mn 0.35; Cu 0.8; O 0.2 Aerospace
6151 98.2 Si 0.9; Mg 0.6; Cr 0.25 Forgings
6162 98.6 Si 0.55; Mg 0.9 Heat-treatable
6201 98.5 Si 0.7; Mg 0.8 Rod
6205 98.4 Si 0.8; Mg 0.5;Mn 0.1; Cr 0.1; Zr 0.1 Extrusions
6262 96.8 Si 0.6; Mg 1.0; Cu 0.25; Cr 0.1; Bi 0.6; Pb 0.6 Universal
6351 97.8 Si 1.0; Mg 0.6;Mn 0.6 Extrusions
6463 98.9 Si 0.4; Mg 0.7 Extrusions
6951 97.2 Si 0.5; Fe 0.8; Cu 0.3; Mg 0.7; Mn 0.1; Zn 0.2 Heat-treatable

7000 series (zinc)

7000 series are alloyed with zinc, and can be precipitation hardened to the highest strengths of any aluminium alloy. Most 7000 series alloys include magnesium and copper as well.

7000 series aluminium alloy nominal composition (% weight) and applications
Alloy Al contents Alloying elements Uses and refs
7005 93.3 Zn 4.5; Mg 1.4; Mn 0.45; Cr 0.13; Zr 0.14; Ti 0.04 Extrusions
7010 93.3 Zn 6.2; Mg 2.35; Cu 1.7; Zr 0.1; Aerospace
7022 91.1 Zn 4.7; Mg 3.1; Mn 0.2; Cu 0.7; Cr 0.2; plate, molds[37][38]
7034 85.7 Zn 11.0; Mg 2.3; Cu 1.0 Ultimate tensile strength 750 MPa[39]
7039 92.3 Zn 4.0; Mg 3.3; Mn 0.2; Cr 0.2 Aerospace armour plate
7049 88.1 Zn 7.7; Mg 2.45; Cu 1.6; Cr 0.15 Universal, aerospace
7050 89.0 Zn 6.2; Mg 2.3; Cu 2.3; Zr 0.1 Universal, aerospace
7055 87.2 Zn 8.0; Mg 2.3; Cu 2.3; Zr 0.1 Plate, extrusions, aerospace[40]
7065 88.5 Zn 7.7; Mg 1.6; Cu 2.1; Zr 0.1 Plate, aerospace[41]
7068 87.6 Zn 7.8; Mg 2.5; Cu 2.0; Zr 0.12 Aerospace, Ultimate tensile strength 710 MPa
7072 99.0 Zn 1.0 Sheet, foil
7075 & 7175 90.0 Zn 5.6; Mg 2.5; Cu 1.6; Cr 0.23 Universal, aerospace, forgings
7079 91.4 Zn 4.3; Mg 3.3; Cu 0.6; Mn 0.2; Cr 0.15 -
7085 89.4 Zn 7.5; Mg 1.5; Cu 1.6 Thick plate, aerospace[42]
7090 Al-Zn-Mg-Cu with Co 1.5% high strength, ductility and resistance to stress corrosion cracking[43]
7091 Al-Zn-Mg-Cu with Co 0.4% high strength, ductility and resistance to stress corrosion cracking[43]
7093 86.7 Zn 9.0; Mg 2.5; Cu 1.5; O 0.2; Zr 0.1 Aerospace
7116 93.7 Zn 4.5; Mg 1; Cu 0.8 Heat-treatable
7129 93.2 Zn 4.5; Mg 1.6; Cu 0.7 -
7150 89.05 Zn 6.4; Mg 2.35; Cu 2.2; O 0.2; Zr 0.1 Aerospace
7178 88.1 Zn 6.8; Mg 2.7; Cu 2.0; Cr 0.26 Universal, aerospace
7255 87.5 Zn 8.0; Mg 2.1; Cu 2.3; Zr 0.1 Plate, aerospace[44]
7475 90.3 Zn 5.7; Mg 2.3; Si 1.5; Cr 0.22 Universal, aerospace

8000 series (other elements)

8000 series are alloyed with other elements which are not covered by other series. Aluminium–lithium alloys are an example.[45]

8000 series aluminium alloy nominal composition (% weight) and applications
Alloy Al content Alloying elements Uses and refs
8006 98.0 Fe 1.5; Mn 0.5; Universal, weldable
8009 88.3 Fe 8.6; Si 1.8; V 1.3 High-temperature aerospace[46]
8011 98.7 Fe 0.7; Si 0.6 Work-hardened
8014 98.2 Fe 1.4; Mn 0.4; universal[47]
8019 87.5 Fe 8.3; Ce 4.0; O 0.2 Aerospace
8025 Si 0.05; Fe 0.06–0.25; Cu 0.20; Mg 0.05; Cr 0.18; Zn 0.50; Ti 0.005–0.02; Li 3.4–4.2; Zr 0.08–0.25 [10]
8030 99.3 Fe 0.5; Cu 0.2 wire[48]
8090 Si 0.20; Fe 0.30; Cu 1.0–1.6; Mn 0.10; Mg 0.6–1.3; Cr 0.10; Zn 0.25; Ti 0.10; Li 2.2–2.7; Zr 0.04–0.16 [10]
8091 Si 0.30; Fe 0.50; Cu 1.0–1.6; Mn 0.10; Mg 0.50–1.2; Cr 0.10; Zn 0.25; Ti 0.10; Li 2.4–2.8; Zr 0.08–0.16 [10]
8093 Si 0.10; Fe 0.10; Cu 1.6–2.2; Mn 0.10; Mg 0.9–1.6; Cr 0.10; Zn 0.25; Ti 0.10; Li 1.9–2.6; Zr 0.04–0.14 [10]
8176 99.3 Fe 0.6; Si 0.1 electrical wire[49]

Mixed list

Wrought aluminium alloy composition limits (% weight)
Alloy Si Fe Cu Mn Mg Cr Zn V Ti Bi Ga Pb Zr Limits†† Al
Each Total
1050[50] 0.25 0.40 0.05 0.05 0.05 0.05 0.03 99.5 min
1060 0.25 0.35 0.05 0.028 0.03 0.03 0.05 0.05 0.028 0.03 0.03 0.03 0.03 0.028 99.6 min
1100 0.95 Si+Fe 0.05–0.20 0.05 0.10 0.05 0.15 99.0 min
1199[50] 0.006 0.006 0.006 0.002 0.006 0.006 0.005 0.002 0.005 0.002 99.99 min
2014 0.50–1.2 0.7 3.9–5.0 0.40–1.2 0.20–0.8 0.10 0.25 0.15 0.05 0.15 remainder
2024 0.50 0.50 3.8–4.9 0.30–0.9 1.2–1.8 0.10 0.25 0.15 0.05 0.15 remainder
2219 0.2 0.30 5.8–6.8 0.20–0.40 0.02 0.10 0.05–0.15 0.02–0.10 0.10–0.25 0.05 0.15 remainder
3003 0.6 0.7 0.05–0.20 1.0–1.5 0.10 0.05 0.15 remainder
3004 0.30 0.7 0.25 1.0–1.5 0.8–1.3 0.25 0.05 0.15 remainder
3102 0.40 0.7 0.10 0.05–0.40 0.30 0.10 0.05 0.15 remainder
4043 4.5–6.0 0.80 0.30 0.05 0.05 0.10 0.20 0.05 0.15 remainder
5005 0.3 0.7 0.2 0.2 0.5–1.1 0.1 0.25 0.05 0.15 remainder
5052 0.25 0.40 0.10 0.10 2.2–2.8 0.15–0.35 0.10 0.05 0.15 remainder
5083 0.40 0.40 0.10 0.40–1.0 4.0–4.9 0.05–0.25 0.25 0.15 0.05 0.15 remainder
5086 0.40 0.50 0.10 0.20–0.7 3.5–4.5 0.05–0.25 0.25 0.15 0.05 0.15 remainder
5154 0.25 0.40 0.10 0.10 3.10–3.90 0.15–0.35 0.20 0.20 0.05 0.15 remainder
5356 0.25 0.40 0.10 0.10 4.50–5.50 0.05–0.20 0.10 0.06–0.20 0.05 0.15 remainder
5454 0.25 0.40 0.10 0.50–1.0 2.4–3.0 0.05–0.20 0.25 0.20 0.05 0.15 remainder
5456 0.25 0.40 0.10 0.50–1.0 4.7–5.5 0.05–0.20 0.25 0.20 0.05 0.15 remainder
5754 0.40 0.40 0.10 0.50 2.6–3.6 0.30 0.20 0.15 0.05 0.15 remainder
6005 0.6–0.9 0.35 0.10 0.10 0.40–0.6 0.10 0.10 0.10 0.05 0.15 remainder
6005A 0.50–0.9 0.35 0.30 0.50 0.40–0.7 0.30 0.20 0.10 0.05 0.15 remainder
6060 0.30–0.6 0.10–0.30 0.10 0.10 0.35–0.6 0.05 0.15 0.10 0.05 0.15 remainder
6061 0.40–0.8 0.7 0.15–0.40 0.15 0.8–1.2 0.04–0.35 0.25 0.15 0.05 0.15 remainder
6063 0.20–0.6 0.35 0.10 0.10 0.45–0.9 0.10 0.10 0.10 0.05 0.15 remainder
6066 0.9–1.8 0.50 0.7–1.2 0.6–1.1 0.8–1.4 0.40 0.25 0.20 0.05 0.15 remainder
6070 1.0–1.7 0.50 0.15–0.40 0.40–1.0 0.50–1.2 0.10 0.25 0.15 0.05 0.15 remainder
6082 0.7–1.3 0.50 0.10 0.40–1.0 0.60–1.2 0.25 0.20 0.10 0.05 0.15 remainder
6105 0.6–1.0 0.35 0.10 0.10 0.45–0.8 0.10 0.10 0.10 0.05 0.15 remainder
6162 0.40–0.8 0.50 0.20 0.10 0.7–1.1 0.10 0.25 0.10 0.05 0.15 remainder
6262 0.40–0.8 0.7 0.15–0.40 0.15 0.8–1.2 0.04–0.14 0.25 0.15 0.40–0.7 0.40–0.7 0.05 0.15 remainder
6351 0.7–1.3 0.50 0.10 0.40–0.8 0.40–0.8 0.20 0.20 0.05 0.15 remainder
6463 0.20–0.6 0.15 0.20 0.05 0.45–0.9 0.05 0.05 0.15 remainder
7005 0.35 0.40 0.10 0.20–0.70 1.0–1.8 0.06–0.20 4.0–5.0 0.01–0.06 0.08–0.20 0.05 0.15 remainder
7022 0.50 0.50 0.50–1.00 0.10–0.40 2.60–3.70 0.10–0.30 4.30–5.20 0.20 0.05 0.15 remainder
7068 0.12 0.15 1.60–2.40 0.10 2.20–3.00 0.05 7.30–8.30 0.01 0.05–0.15 0.05 0.15 remainder
7072 0.7 Si+Fe 0.10 0.10 0.10 0.8–1.3 0.05 0.15 remainder
7075 0.40 0.50 1.2–2.0 0.30 2.1–2.9 0.18–0.28 5.1–6.1 0.20 0.05 0.15 remainder
7079 0.3 0.40 0.40–0.80 0.10–0.30 2.9–3.7 0.10–0.25 3.8–4.8 0.10 0.05 0.15 remainder
7116 0.15 0.30 0.50–1.1 0.05 0.8–1.4 4.2–5.2 0.05 0.05 0.03 0.05 0.15 remainder
7129 0.15 0.30 0.50–0.9 0.10 1.3–2.0 0.10 4.2–5.2 0.05 0.05 0.03 0.05 0.15 remainder
7178 0.40 0.50 1.6–2.4 0.30 2.4–3.1 0.18–0.28 6.3–7.3 0.20 0.05 0.15 remainder
8176[49] 0.03–0.15 0.40–1.0 0.10 0.03 0.05 0.15 remainder
Alloy Si Fe Cu Mn Mg Cr Zn V Ti Bi Ga Pb Zr Limits†† Al
Each Total
Manganese plus chromium must be between 0.12 and 0.50%.
††This limit applies to all elements for which no other limit is specified on a given row, because no column exists or because the column is blank.

Cast alloys

The Aluminum Association (AA) has adopted a nomenclature similar to that of wrought alloys. British Standard and DIN have different designations. In the AA system, the second two digits reveal the minimum percentage of aluminium, e.g. 150.x correspond to a minimum of 99.50% aluminium. The digit after the decimal point takes a value of 0 or 1, denoting casting and ingot respectively.[1] The main alloying elements in the AA system are as follows:[51]

  • 1xx.x series are minimum 99% aluminium
  • 2xx.x series copper
  • 3xx.x series silicon, with added copper and/or magnesium
  • 4xx.x series silicon
  • 5xx.x series magnesium
  • 6xx.x unused series
  • 7xx.x series zinc
  • 8xx.x series tin
  • 9xx.x other elements
Minimum tensile requirements for cast aluminium alloys[52]
Alloy type Temper Tensile strength (min) in ksi (MPa) Yield strength (min) in ksi (MPa) Elongation in 2 in %
ANSI UNS
201.0 A02010 T7 Шаблон:Convert Шаблон:Convert 3.0
204.0 A02040 T4 Шаблон:Convert Шаблон:Convert 6.0
242.0 A02420 O Шаблон:Convert N/A N/A
T61 Шаблон:Convert Шаблон:Convert N/A
A242.0 A12420 T75 Шаблон:Convert N/A 1.0
295.0 A02950 T4 Шаблон:Convert Шаблон:Convert 6.0
T6 Шаблон:Convert Шаблон:Convert 3.0
T62 Шаблон:Convert Шаблон:Convert N/A
T7 Шаблон:Convert Шаблон:Convert 3.0
319.0 A03190 F Шаблон:Convert Шаблон:Convert 1.5
T5 Шаблон:Convert N/A N/A
T6 Шаблон:Convert Шаблон:Convert 1.5
328.0 A03280 F Шаблон:Convert Шаблон:Convert 1.0
T6 Шаблон:Convert Шаблон:Convert 1.0
355.0 A03550 T6 Шаблон:Convert Шаблон:Convert 2.0
T51 Шаблон:Convert Шаблон:Convert N/A
T71 Шаблон:Convert Шаблон:Convert N/A
C355.0 A33550 T6 Шаблон:Convert Шаблон:Convert 2.5
356.0 A03560 F Шаблон:Convert Шаблон:Convert 2.0
T6 Шаблон:Convert Шаблон:Convert 3.0
T7 Шаблон:Convert N/A N/A
T51 Шаблон:Convert Шаблон:Convert N/A
T71 Шаблон:Convert Шаблон:Convert 3.0
A356.0 A13560 T6 Шаблон:Convert Шаблон:Convert 3.5
T61 Шаблон:Convert Шаблон:Convert 1.0
443.0 A04430 F Шаблон:Convert Шаблон:Convert 3.0
B443.0 A24430 F Шаблон:Convert Шаблон:Convert 3.0
512.0 A05120 F Шаблон:Convert Шаблон:Convert N/A
514.0 A05140 F Шаблон:Convert Шаблон:Convert 6.0
520.0 A05200 T4 Шаблон:Convert Шаблон:Convert 12.0
535.0 A05350 F Шаблон:Convert Шаблон:Convert 9.0
705.0 A07050 T5 Шаблон:Convert Шаблон:Convert 5.0
707.0 A07070 T7 Шаблон:Convert Шаблон:Convert 1.0
710.0 A07100 T5 Шаблон:Convert Шаблон:Convert 2.0
712.0 A07120 T5 Шаблон:Convert Шаблон:Convert 4.0
713.0 A07130 T5 Шаблон:Convert Шаблон:Convert 3.0
771.0 A07710 T5 Шаблон:Convert Шаблон:Convert 1.5
T51 Шаблон:Convert Шаблон:Convert 3.0
T52 Шаблон:Convert Шаблон:Convert 1.5
T6 Шаблон:Convert Шаблон:Convert 5.0
T71 Шаблон:Convert Шаблон:Convert 5.0
850.0 A08500 T5 Шаблон:Convert N/A 5.0
851.0 A08510 T5 Шаблон:Convert N/A 3.0
852.0 A08520 T5 Шаблон:Convert Шаблон:Convert N/A
Only when requested by the customer

Named alloys

  • A380 Offers an excellent combination of casting, mechanical and thermal properties, exhibits excellent fluidity, pressure tightness and resistance to hot cracking. Used in the Aerospace Industry
  • Alferium an aluminium–iron alloy developed by Schneider, used for aircraft manufacture by Société pour la Construction d'Avions Métallique "Aviméta"
  • Alclad aluminium sheet formed from high-purity aluminium surface layers bonded to high strength aluminium alloy core material[53]
  • Birmabright (aluminium, magnesium) a product of The Birmetals Company, basically equivalent to 5251
  • Duralumin (copper, aluminium)
  • Hindalium (aluminium, magnesium, manganese, silicon) product of Hindustan Aluminium Corporation Ltd, made in 16ga rolled sheets for cookware
  • Lockalloy is an alloy that consists of 62% beryllium and 38% aluminium. It was used as a structural metal in the aerospace industry, developed in the 1960s by the Lockheed Missiles and Space Company.
  • Pandalloy Pratt & Whitney proprietary alloy, supposedly having high strength and superior high temperature performance.
  • Magnalium
  • Magnox (magnesium, aluminium)
  • Silumin (aluminium, silicon)
  • Titanal (aluminium, zinc, magnesium, copper, zirconium) a product of Austria Metall AG. Commonly used in high performance sports products, particularly snowboards and skis.
  • Y alloy, Hiduminium, R.R. alloys: pre-war nickel–aluminium alloys, used in aerospace and engine pistons, for their ability to retain strength at elevated temperature. These are replaced nowadays by higher-performing iron-aluminium alloys like 8009 capable to operate with low creep up to 300C.

Applications

Aerospace alloys

Файл:Mig-29 on landing.jpg
Parts of the Mig–29 are made from Al–Sc alloy.[54]

Titanium alloys, which are stronger but heavier than Al-Sc alloys, are still much more widely used.[55]

The main application of metallic scandium by weight is in aluminium–scandium alloys for minor aerospace industry components. These alloys contain between 0.1% and 0.5% (by weight) of scandium. They were used in the Russian military aircraft Mig 21 and Mig 29.[54]

Some items of sports equipment, which rely on high performance materials, have been made with scandium–aluminium alloys, including baseball bats,[56] lacrosse sticks, as well as bicycle[57] frames and components, and tent poles.

U.S. gunmaker Smith & Wesson produces revolvers with frames composed of scandium alloy and cylinders of titanium.[58]

Potential use as Space Materials

Due to its light-weight and high strength, aluminium alloys are desired materials to be applied in spacecraft, satellites and other components to be deployed in space. However, this application is limited by the energetic particle irradiation emitted by the Sun. The impact and deposition of solar energetic particles within the microstructure of conventional aluminium alloys can induce the dissolution of most common hardening phases, leading to softening. The recently introduced crossover aluminium alloys[59][60] are being tested as a surrogate to 6xxx and 7xxx series in environments where energetic particle irradiation is a major concern. Such crossover aluminium alloys can be hardened via precipitation of a chemical complex phase known as T-phase in which the radiation resistance has been proved to be superior than other hardening phases of conventional aluminium alloys.[61][62]

List of aerospace aluminium alloys

The following aluminium alloys are commonly used in aircraft and other aerospace structures:[63][64]

Note that the term aircraft aluminium or aerospace aluminium usually refers to 7075.[65][66]

4047 aluminium is a unique alloy used in both the aerospace and automotive applications as a cladding alloy or filler material. As filler, aluminium alloy 4047 strips can be combined to intricate applications to bond two metals.[67]

6951 is a heat treatable alloy providing additional strength to the fins while increasing sag resistance; this allows the manufacturer to reduce the gauge of the sheet and therefore reducing the weight of the formed fin. These distinctive features make aluminium alloy 6951 one of the preferred alloys for heat transfer and heat exchangers manufactured for aerospace applications.[68]

6063 aluminium alloys are heat treatable with moderately high strength, excellent corrosion resistance and good extrudability. They are regularly used as architectural and structural members.[69]

The following list of aluminium alloys are currently produced,Шаблон:Citation needed but less widelyШаблон:Citation needed used:

Marine alloys

These alloys are used for boat building and shipbuilding, and other marine and salt-water sensitive shore applications.[70]

4043, 5183, 6005A, 6082 also used in marine constructions and off shore applications.

Automotive alloys

6111 aluminium and 2008 aluminium alloy are extensively used for external automotive body panels, with 5083 and 5754 used for inner body panels. Bonnets have been manufactured from 2036, 6016, and 6111 alloys. Truck and trailer body panels have used 5456 aluminium.

Automobile frames often use 5182 aluminium or 5754 aluminium formed sheets, 6061 or 6063 extrusions.

Wheels have been cast from A356.0 aluminium or formed 5xxx sheet.[71]

Cylinder blocks and crankcases are often cast made of aluminium alloys. The most popular aluminium alloys used for cylinder blocks are A356, 319 and to a minor extent 242.

Aluminium alloys containing cerium are being developed and implemented in high-temperature automotive applications, such as cylinder heads and turbochargers, and in other energy generation applications.[72] These alloys were initially developed as a way to increase the usage of cerium, which is over-produced in rare-earth mining operations for more coveted elements such as neodymium and dysprosium,[73] but gained attention for its strength at high temperatures over long periods of time.[74] It gains its strength from the presence of an Al11Ce3 intermetallic phase which is stable up to temperatures of 540 °C, and retains its strength up to 300 °C, making it quite viable at elevated temperatures. Aluminium–cerium alloys are typically cast, due to their excellent casting properties, although work has also been done to show that laser-based additive manufacturing techniques can be used as well to create parts with more complex geometries and greater mechanical properties.[75] Recent work has largely focused on adding higher-order alloying elements to the binary Al-Ce system to improve its mechanical performance at room and elevated temperatures, such as iron, nickel, magnesium, or copper, and work is being done to understand the alloying element interactions further.[76]

Air and gas cylinders

6061 aluminium and 6351 aluminium are widely used in breathing gas cylinders for scuba diving and SCBA alloys.[77]

See also

References

Шаблон:Reflist

Bibliography

External links

Шаблон:Aluminium alloys Шаблон:Authority control

  1. 1,0 1,1 I. J. Polmear, Light Alloys, Arnold, 1995
  2. Шаблон:Cite web
  3. SAE aluminium specifications list, accessed 8 October 2006. Also SAE Aerospace Council Шаблон:Webarchive, accessed 8 October 2006.
  4. R.E. Sanders, Technology Innovation in aluminium Products, The Journal of The Minerals, 53(2):21–25, 2001. Online ed. Шаблон:Webarchive
  5. Шаблон:Cite web
  6. Шаблон:Cite book
  7. Шаблон:Cite web
  8. Шаблон:Cite book
  9. Шаблон:Cite web
  10. 10,00 10,01 10,02 10,03 10,04 10,05 10,06 10,07 10,08 10,09 10,10 10,11 10,12 10,13 10,14 10,15 10,16 10,17 10,18 10,19 10,20 10,21 10,22 Шаблон:Harvnb
  11. Шаблон:Cite book Table 49
  12. Шаблон:Cite web
  13. Шаблон:Cite web
  14. Шаблон:Cite web
  15. Effect of Mg and Zn Elements on the Mechanical Properties and Precipitates in 2099 Alloy Шаблон:Webarchive
  16. Шаблон:Cite journal
  17. 2195 Aluminum Composition SpecШаблон:Dead link
  18. Super Lightweight External Tank Шаблон:Webarchive, NASA, retrieved 12 December 2013.
  19. Шаблон:Cite web
  20. Шаблон:Cite journal
  21. 2218 Aluminium Forged Products Billet For Airplane Engine Cylinder Head
  22. Шаблон:Cite web
  23. Шаблон:Cite web
  24. Шаблон:Cite book
  25. 3102 (AlMn0.2, A93102) Aluminum Шаблон:Webarchive
  26. Шаблон:Cite web
  27. Шаблон:Cite journal
  28. Шаблон:Cite web
  29. ASM Handbook, Volume 5: Surface Engineering C.M. Cotell, J.A. Sprague, and F.A. Smidt, Jr., editors, p. 490 DOI: 10.1361/asmhba0001281
  30. Woldman's Engineering Alloys, 9th Ed. (#06821G) ALLOY DATA/17
  31. Шаблон:Cite web
  32. Шаблон:Cite web
  33. Шаблон:Cite web
  34. Шаблон:Cite journal
  35. Шаблон:Cite journal
  36. Шаблон:Cite journal
  37. Шаблон:Cite report
  38. Sahamit machinery 7022
  39. RSP alloys datasheet
  40. Шаблон:Cite web
  41. Шаблон:Cite web
  42. Шаблон:Cite web
  43. 43,0 43,1 Шаблон:Cite book
  44. Шаблон:Cite web
  45. Шаблон:Cite web
  46. Y. Barbaux, G. Pons, "New rapidly solidified aluminium alloys for elevated temperature applications on aerospace structures", Journal de Physique IV Colloque, 1993, 03 (C7), pp.C7-191-C7-196
  47. R.B. Ross, "Metallic Materials Specification Handbook", p.1B-11
  48. Aluminum 8030 Alloy (UNS A98030)
  49. 49,0 49,1 Шаблон:Cite web
  50. 50,0 50,1 ASM Metals Handbook Vol. 2, Properties and Selection of Nonferrous Alloys and Special Purpose Materials, ASM International (p. 222)
  51. Шаблон:Cite book
  52. ASTM B 26 / B 26M – 05
  53. Parker, Dana T. Building Victory: Aircraft Manufacturing in the Los Angeles Area in World War II, p. 39, 118, Cypress, CA, 2013. Шаблон:ISBN.
  54. 54,0 54,1 Шаблон:Cite journal
  55. Шаблон:Cite book
  56. Шаблон:Cite journal
  57. Шаблон:Cite web
  58. Шаблон:Cite web
  59. Шаблон:Cite journal
  60. Шаблон:Cite journal
  61. Шаблон:Cite journal
  62. Шаблон:Cite journal
  63. Fundamentals of Flight, Shevell, Richard S., 1989, Englewood Cliffs, Prentice Hall, Шаблон:ISBN, Ch 18, pp 373–386.
  64. Winston O. Soboyejo, T.S. Srivatsan, "Advanced Structural Materials: Properties, Design Optimization, and Applications", p. 245 Table 9.4. – Nominal composition of Aluminium Aerospace Alloys
  65. Шаблон:Cite web
  66. Шаблон:Cite web
  67. Шаблон:Cite news
  68. Шаблон:Cite news
  69. Шаблон:Cite journal
  70. Boatbuilding with aluminium, Stephen F. Pollard, 1993, International Marine, Шаблон:ISBN
  71. Шаблон:Cite book
  72. Шаблон:Cite web
  73. "Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development." Sims Z, Weiss D, McCall S et al. JOM, (2016), 1940–1947, 68(7).
  74. "High performance aluminum-cerium alloys for high-temperature applications." Sims Z, Rios O, Weiss D et al. Materials Horizons, (2017), 1070–1078, 4(6).
  75. "Evaluation of an Al-Ce alloy for laser additive manufacturing." Plotkowski A, Rios O, Sridharan N et al. Acta Materialia, (2017), 507–519, 126.
  76. "Cerium in aluminum alloys." Frank Czerwinski, J Mater Sci (2020) 55:24–72
  77. Шаблон:Cite web