Английская Википедия:Appell series

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Dablink In mathematics, Appell series are a set of four hypergeometric series F1, F2, F3, F4 of two variables that were introduced by Шаблон:Harvs and that generalize Gauss's hypergeometric series 2F1 of one variable. Appell established the set of partial differential equations of which these functions are solutions, and found various reduction formulas and expressions of these series in terms of hypergeometric series of one variable.

Definitions

The Appell series F1 is defined for |x| < 1, |y| < 1 by the double series

<math>

F_1(a,b_1,b_2;c;x,y) = \sum_{m,n=0}^\infty \frac{(a)_{m+n} (b_1)_m (b_2)_n} {(c)_{m+n} \,m! \,n!} \,x^m y^n ~, </math>

where <math>(q)_n</math> is the Pochhammer symbol. For other values of x and y the function F1 can be defined by analytic continuation. It can be shown[1] that

<math>F_1(a,b_1,b_2;c;x,y) = \sum_{r=0}^\infty \frac{(a)_r (b_1)_r (b_2)_r (c-a)_r} {(c+r-1)_r (c)_{2r} r!} \,x^r y^r {}_2F_{1}\left(a+r,b_1+r;c+2r;x\right){}_2F_{1}\left(a+r,b_2+r;c+2r;y\right)~.</math>

Similarly, the function F2 is defined for |x| + |y| < 1 by the series

<math>

F_2(a,b_1,b_2;c_1,c_2;x,y) = \sum_{m,n=0}^\infty \frac{(a)_{m+n} (b_1)_m (b_2)_n} {(c_1)_m (c_2)_n \,m! \,n!} \,x^m y^n </math>

and it can be shown[2] that

<math>

F_2(a,b_1,b_2;c_1,c_2;x,y) = \sum_{r=0}^\infty \frac{(a)_r (b_1)_r (b_2)_r} {(c_1)_r (c_2)_r r!} \,x^r y^r {}_2F_{1}\left(a+r,b_1+r;c_1+r;x\right){}_2F_{1}\left(a+r,b_2+r;c_2+r;y\right)~.</math>

Also the function F3 for |x| < 1, |y| < 1 can be defined by the series

<math>

F_3(a_1,a_2,b_1,b_2;c;x,y) = \sum_{m,n=0}^\infty \frac{(a_1)_m (a_2)_n (b_1)_m (b_2)_n} {(c)_{m+n} \,m! \,n!} \,x^m y^n ~, </math>

and the function F4 for |x|½ + |y|½ < 1 by the series

<math>

F_4(a,b;c_1,c_2;x,y) = \sum_{m,n=0}^\infty \frac{(a)_{m+n} (b)_{m+n}} {(c_1)_m (c_2)_n \,m! \,n!} \,x^m y^n ~. </math>

Recurrence relations

Like the Gauss hypergeometric series 2F1, the Appell double series entail recurrence relations among contiguous functions. For example, a basic set of such relations for Appell's F1 is given by:

<math>

(a-b_1-b_2) F_1(a,b_1,b_2,c; x,y) - a \,F_1(a+1,b_1,b_2,c; x,y) + b_1 F_1(a,b_1+1,b_2,c; x,y) + b_2 F_1(a,b_1,b_2+1,c; x,y) = 0 ~, </math>

<math>

c \,F_1(a,b_1,b_2,c; x,y) - (c-a) F_1(a,b_1,b_2,c+1; x,y) - a \,F_1(a+1,b_1,b_2,c+1; x,y) = 0 ~, </math>

<math>

c \,F_1(a,b_1,b_2,c; x,y) + c(x-1) F_1(a,b_1+1,b_2,c; x,y) - (c-a)x \,F_1(a,b_1+1,b_2,c+1; x,y) = 0 ~, </math>

<math>

c \,F_1(a,b_1,b_2,c; x,y) + c(y-1) F_1(a,b_1,b_2+1,c; x,y) - (c-a)y \,F_1(a,b_1,b_2+1,c+1; x,y) = 0 ~. </math>

Any other relation[3] valid for F1 can be derived from these four.

Similarly, all recurrence relations for Appell's F3 follow from this set of five:

<math>

c \,F_3(a_1,a_2,b_1,b_2,c; x,y) + (a_1+a_2-c) F_3(a_1,a_2,b_1,b_2,c+1; x,y) - a_1 F_3(a_1+1,a_2,b_1,b_2,c+1; x,y) - a_2 F_3(a_1,a_2+1,b_1,b_2,c+1; x,y) = 0 ~, </math>

<math>

c \,F_3(a_1,a_2,b_1,b_2,c; x,y) - c \,F_3(a_1+1,a_2,b_1,b_2,c; x,y) + b_1 x \,F_3(a_1+1,a_2,b_1+1,b_2,c+1; x,y) = 0 ~, </math>

<math>

c \,F_3(a_1,a_2,b_1,b_2,c; x,y) - c \,F_3(a_1,a_2+1,b_1,b_2,c; x,y) + b_2 y \,F_3(a_1,a_2+1,b_1,b_2+1,c+1; x,y) = 0 ~, </math>

<math>

c \,F_3(a_1,a_2,b_1,b_2,c; x,y) - c \,F_3(a_1,a_2,b_1+1,b_2,c; x,y) + a_1 x \,F_3(a_1+1,a_2,b_1+1,b_2,c+1; x,y) = 0 ~, </math>

<math>

c \,F_3(a_1,a_2,b_1,b_2,c; x,y) - c \,F_3(a_1,a_2,b_1,b_2+1,c; x,y) + a_2 y \,F_3(a_1,a_2+1,b_1,b_2+1,c+1; x,y) = 0 ~. </math>

Derivatives and differential equations

For Appell's F1, the following derivatives result from the definition by a double series:

<math>

\frac {\partial^n} {\partial x^n} F_1(a,b_1,b_2,c; x,y) = \frac {\left(a\right)_n \left(b_1\right)_n} {\left(c\right)_n} F_1(a+n,b_1+n,b_2,c+n; x,y) </math>

<math>

\frac {\partial^n} {\partial y^n} F_1(a,b_1,b_2,c; x,y) = \frac {\left(a\right)_n \left(b_2\right)_n} {\left(c\right)_n} F_1(a+n,b_1,b_2+n,c+n; x,y) </math>

From its definition, Appell's F1 is further found to satisfy the following system of second-order differential equations:

<math>

x(1-x) \frac {\partial^2F_1(x,y)} {\partial x^2} + y(1-x) \frac {\partial^2F_1(x,y)} {\partial x \partial y} + [c - (a+b_1+1) x] \frac {\partial F_1(x,y)} {\partial x} - b_1 y \frac {\partial F_1(x,y)} {\partial y} - a b_1 F_1(x,y) = 0 </math>

<math>

y(1-y) \frac {\partial^2F_1(x,y)} {\partial y^2} + x(1-y) \frac {\partial^2F_1(x,y)} {\partial x \partial y} + [c - (a+b_2+1) y] \frac {\partial F_1(x,y)} {\partial y} - b_2 x \frac {\partial F_1(x,y)} {\partial x} - a b_2 F_1(x,y)= 0 </math>

A system partial differential equations for F2 is

<math>

x(1-x) \frac {\partial^2F_2(x,y)} {\partial x^2} - xy \frac {\partial^2F_2(x,y)} {\partial x \partial y} + [c_1 - (a+b_1+1) x] \frac {\partial F_2(x,y)} {\partial x} -b_1 y \frac {\partial F_2(x,y)} {\partial y}- a b_1 F_2(x,y) = 0 </math>

<math>

y(1-y) \frac {\partial^2F_2(x,y)} {\partial y^2} - xy \frac {\partial^2F_2(x,y)} {\partial x \partial y} + [c_2 - (a+b_2+1) y] \frac {\partial F_2(x,y)} {\partial y} -b_2 x \frac {\partial F_2(x,y)} {\partial x}- a b_2 F_2(x,y) = 0 </math>

The system have solution

<math>F_2(x,y)=C_1F_2(a,b_1,b_2,c_1,c_2;x,y)+C_2x^{1-c_1}F_2(a-c_1+1,b_1-c_1+1,b_2,2-c_1,c_2;x,y)+C_3y^{1-c_2}F_2(a-c_2+1,b_1,b_2-c_2+1,c_1,2-c_2;x,y)+C_4x^{1-c_1}y^{1-c_2}F_2(a-c_1-c_2+2,b_1-c_1+1,b_2-c_2+1,2-c_1,2-c_2;x,y)</math>

Similarly, for F3 the following derivatives result from the definition:

<math>

\frac {\partial} {\partial x} F_3(a_1,a_2,b_1,b_2,c; x,y) = \frac {a_1 b_1} {c} F_3(a_1+1,a_2,b_1+1,b_2,c+1; x,y) </math>

<math>

\frac {\partial} {\partial y} F_3(a_1,a_2,b_1,b_2,c; x,y) = \frac {a_2 b_2} {c} F_3(a_1,a_2+1,b_1,b_2+1,c+1; x,y) </math>

And for F3 the following system of differential equations is obtained:

<math>

x(1-x) \frac {\partial^2F_3(x,y)} {\partial x^2} + y \frac {\partial^2F_3(x,y)} {\partial x \partial y} + [c - (a_1+b_1+1) x] \frac {\partial F_3(x,y)} {\partial x} - a_1 b_1 F_3(x,y) = 0 </math>

<math>

y(1-y) \frac {\partial^2F_3(x,y)} {\partial y^2} + x \frac {\partial^2F_3(x,y)} {\partial x \partial y} + [c - (a_2+b_2+1) y] \frac {\partial F_3(x,y)} {\partial y} - a_2 b_2 F_3(x,y) = 0 </math>

A system partial differential equations for F4 is

<math>

x(1-x) \frac {\partial^2F_4(x,y)} {\partial x^2} - y^2 \frac {\partial^2F_4(x,y)} {\partial y^2} -2xy\frac {\partial^2F_4(x,y)} {\partial x \partial y}+[c_1 - (a+b+1) x] \frac {\partial F_4(x,y)} {\partial x} - (a+b+1) y \frac {\partial F_4(x,y)} {\partial y}-a b F_4(x,y)= 0 </math>

<math>

y(1-y) \frac {\partial^2F_4(x,y)} {\partial y^2} - x^2 \frac {\partial^2F_4(x,y)} {\partial x^2} -2xy\frac {\partial^2F_4(x,y)} {\partial x \partial y}+[c_2 - (a+b+1) y] \frac {\partial F_4(x,y)} {\partial y} - (a+b+1) x \frac {\partial F_4(x,y)} {\partial x}-a b F_4(x,y)= 0 </math>

The system has solution

<math>F_4(x,y)=C_1F_4(a,b,c_1,c_2;x,y)+C_2x^{1-c_1}F_4(a-c_1+1,b-c_1+1,2-c_1,c_2;x,y)+C_3y^{1-c_2}F_4(a-c_2+1,b-c_2+1,c_1,2-c_2;x,y)+C_4x^{1-c_1}y^{1-c_2}F_4(2+a-c_1-c_2,2+b-c_1-c_2,2-c_1,2-c_2;x,y)</math>

Integral representations

The four functions defined by Appell's double series can be represented in terms of double integrals involving elementary functions only Шаблон:Harv. However, Шаблон:Harvs discovered that Appell's F1 can also be written as a one-dimensional Euler-type integral:

<math>

F_1(a,b_1,b_2,c; x,y) = \frac{\Gamma(c)} {\Gamma(a)\Gamma(c-a)} \int_0^1 t^{a-1} (1-t)^{c-a-1} (1-xt)^{-b_1} (1-yt)^{-b_2} \,\mathrm{d}t, \quad \real \,c > \real \,a > 0 ~. </math>

This representation can be verified by means of Taylor expansion of the integrand, followed by termwise integration.

Special cases

Picard's integral representation implies that the incomplete elliptic integrals F and E as well as the complete elliptic integral Π are special cases of Appell's F1:

<math>

F(\phi,k) = \int_0^\phi \frac{\mathrm{d} \theta} {\sqrt{1 - k^2 \sin^2 \theta}} = \sin (\phi) \,F_1(\tfrac 1 2, \tfrac 1 2, \tfrac 1 2, \tfrac 3 2; \sin^2 \phi, k^2 \sin^2 \phi), \quad |\real \,\phi| < \frac \pi 2 ~, </math>

<math>

E(\phi, k) = \int_0^\phi \sqrt{1 - k^2 \sin^2 \theta} \,\mathrm{d} \theta = \sin (\phi) \,F_1(\tfrac 1 2, \tfrac 1 2, -\tfrac 1 2, \tfrac 3 2; \sin^2 \phi, k^2 \sin^2 \phi), \quad |\real \,\phi| < \frac \pi 2 ~, </math>

<math>

\Pi(n,k) = \int_0^{\pi/2} \frac{\mathrm{d} \theta} {(1 - n \sin^2 \theta) \sqrt{1 - k^2 \sin^2 \theta}} = \frac {\pi} {2} \,F_1(\tfrac 1 2, 1, \tfrac 1 2, 1; n,k^2) ~. </math>

Related series

Шаблон:Main

References

Шаблон:Reflist

External links

  1. See Burchnall & Chaundy (1940), formula (30).
  2. See Burchnall & Chaundy (1940), formula (26) or Erdélyi (1953), formula 5.12(9).
  3. For example, <math>(y-x) F_1(a, b_1+1, b_2+1,c,x,y) = y \, F_1(a,b_1,b_2+1,c,x,y) - x \, F_1(a,b_1+1,b_2,c,x,y)</math>