Английская Википедия:Arnold–Givental conjecture

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

The Arnold–Givental conjecture, named after Vladimir Arnold and Alexander Givental, is a statement on Lagrangian submanifolds. It gives a lower bound in terms of the Betti numbers of a Lagrangian submanifold Шаблон:Mvar on the number of intersection points of Шаблон:Mvar with another Lagrangian submanifold which is obtained from Шаблон:Mvar by Hamiltonian isotopy, and which intersects Шаблон:Mvar transversally.

Statement

Let <math>(M, \omega)</math> be a compact <math>2n</math>-dimensional symplectic manifold. An anti-symplectic involution is a diffeomorphism <math>\tau: M \to M</math> such that <math>\tau^* \omega = -\omega</math>. The fixed point set <math>L \subset M</math> of <math>\tau</math> is necessarily a Lagrangian submanifold.

Let <math>H_t\in C^\infty(M), 0 \leq t \leq 1</math> be a smooth family of Hamiltonian functions on <math>M</math> which generates a 1-parameter family of Hamiltonian diffeomorphisms <math>\varphi_t: M \to M</math>. The Arnold–Givental conjecture says, suppose <math>\varphi_1(L)</math> intersects transversely with <math>L</math>, then

<math>\# (\varphi_1(L) \cap L) \geq \sum_{i=0}^n {\rm dim} H_*(L; {\mathbb Z}_2).</math>

Status

The Arnold–Givental conjecture has been proved for certain special cases.

Givental proved it for the case when <math>(M, L) = (\mathbb{CP}^n, \mathbb{RP}^n)</math>.[1]

Yong-Geun Oh proved it for real forms of compact Hermitian spaces with suitable assumptions on the Maslov indices.[2]

Lazzarini proved it for negative monotone case under suitable assumptions on the minimal Maslov number.

Kenji Fukaya, Yong-Geun Oh, Ohta, and Ono proved for the case when <math>(M, \omega)</math> is semi-positive.[3]

Frauenfelder proved it for the situation when <math>(M, \omega)</math> is a certain symplectic reduction, using gauged Floer theory. [4]

See also

References

Citations

Шаблон:Reflist

Bibliography


Шаблон:Topology-stub