Английская Википедия:Asymptotic dimension
In metric geometry, asymptotic dimension of a metric space is a large-scale analog of Lebesgue covering dimension. The notion of asymptotic dimension was introduced by Mikhail Gromov in his 1993 monograph Asymptotic invariants of infinite groups[1] in the context of geometric group theory, as a quasi-isometry invariant of finitely generated groups. As shown by Guoliang Yu, finitely generated groups of finite homotopy type with finite asymptotic dimension satisfy the Novikov conjecture.[2] Asymptotic dimension has important applications in geometric analysis and index theory.
Formal definition
Let <math>X</math> be a metric space and <math>n\ge 0</math> be an integer. We say that <math> \operatorname{asdim}(X)\le n </math> if for every <math>R\ge 1</math> there exists a uniformly bounded cover <math> \mathcal U</math> of <math>X</math> such that every closed <math>R</math>-ball in <math>X</math> intersects at most <math>n+1</math> subsets from <math> \mathcal U</math>. Here 'uniformly bounded' means that <math>\sup_{U\in \mathcal U} \operatorname{diam}(U) <\infty </math>.
We then define the asymptotic dimension <math> \operatorname{asdim}(X)</math> as the smallest integer <math>n\ge 0</math> such that <math> \operatorname{asdim}(X)\le n </math>, if at least one such <math>n</math> exists, and define <math> \operatorname{asdim}(X):=\infty</math> otherwise.
Also, one says that a family <math>(X_i)_{i\in I} </math> of metric spaces satisfies <math> \operatorname{asdim}(X)\le n</math> uniformly if for every <math>R\ge 1</math> and every <math>i\in I</math> there exists a cover <math>\mathcal U_i</math> of <math>X_i</math> by sets of diameter at most <math>D(R)<\infty</math> (independent of <math>i</math>) such that every closed <math>R</math>-ball in <math>X_i</math> intersects at most <math>n+1</math> subsets from <math> \mathcal U_i</math>.
Examples
- If <math>X</math> is a metric space of bounded diameter then <math> \operatorname{asdim}(X)=0</math>.
- <math>\operatorname{asdim}(\mathbb R)=\operatorname{asdim}(\mathbb Z)=1 </math>.
- <math> \operatorname{asdim}(\mathbb R^n)=n</math>.
- <math> \operatorname{asdim}(\mathbb H^n)=n</math>.
Properties
- If <math>Y\subseteq X</math> is a subspace of a metric space <math>X</math>, then <math> \operatorname{asdim}(Y)\le \operatorname{asdim}(X) </math>.
- For any metric spaces <math>X</math> and <math>Y</math> one has <math>\operatorname{asdim}(X\times Y)\le \operatorname{asdim}(X)+\operatorname{asdim}(Y)</math>.
- If <math>A,B\subseteq X</math> then <math> \operatorname{asdim}(A\cup B)\le \max\{\operatorname{asdim}(A), \operatorname{asdim}(B)\} </math>.
- If <math>f:Y\to X</math> is a coarse embedding (e.g. a quasi-isometric embedding), then <math> \operatorname{asdim}(Y)\le \operatorname{asdim}(X) </math>.
- If <math>X</math> and <math>Y</math> are coarsely equivalent metric spaces (e.g. quasi-isometric metric spaces), then <math> \operatorname{asdim}(X)= \operatorname{asdim}(Y) </math>.
- If <math>X</math> is a real tree then <math> \operatorname{asdim}(X)\le 1</math>.
- Let <math>f : X\to Y</math> be a Lipschitz map from a geodesic metric space <math>X</math> to a metric space <math>Y</math> . Suppose that for every <math>r > 0</math> the set family <math>\{f^{-1}(B_r(y))\}_{y\in Y}</math> satisfies the inequality <math> \operatorname{asdim} \le n</math> uniformly. Then <math>\operatorname{asdim}(X)\le \operatorname{asdim}(Y) +n.</math> See[3]
- If <math>X</math> is a metric space with <math> \operatorname{asdim}(X)<\infty</math> then <math>X</math> admits a coarse (uniform) embedding into a Hilbert space.[4]
- If <math>X</math> is a metric space of bounded geometry with <math> \operatorname{asdim}(X)\le n</math> then <math>X</math> admits a coarse embedding into a product of <math>n+1</math> locally finite simplicial trees.[5]
Asymptotic dimension in geometric group theory
Asymptotic dimension achieved particular prominence in geometric group theory after a 1998 paper of Guoliang Yu[2] , which proved that if <math>G</math> is a finitely generated group of finite homotopy type (that is with a classifying space of the homotopy type of a finite CW-complex) such that <math> \operatorname{asdim}(G)<\infty</math>, then <math>G</math> satisfies the Novikov conjecture. As was subsequently shown,[6] finitely generated groups with finite asymptotic dimension are topologically amenable, i.e. satisfy Guoliang Yu's Property A introduced in[7] and equivalent to the exactness of the reduced C*-algebra of the group.
- If <math>G</math> is a word-hyperbolic group then <math> \operatorname{asdim}(G)<\infty</math>.[8]
- If <math>G</math> is relatively hyperbolic with respect to subgroups <math> H_1,\dots, H_k</math> each of which has finite asymptotic dimension then <math> \operatorname{asdim}(G)<\infty</math>.[9]
- <math>\operatorname{asdim}(\mathbb Z^n)=n</math>.
- If <math>H\le G</math>, where <math>H,G</math> are finitely generated, then <math> \operatorname{asdim}(H)\le \operatorname{asdim}(G)</math>.
- For Thompson's group F we have <math>asdim(F)=\infty</math> since <math>F</math> contains subgroups isomorphic to <math>\mathbb Z^n</math> for arbitrarily large <math>n</math>.
- If <math>G</math> is the fundamental group of a finite graph of groups <math>\mathbb A</math> with underlying graph <math>A</math> and finitely generated vertex groups, then[10]
<math display="block">\operatorname{asdim}(G)\le 1+ \max_{v\in VY} \operatorname{asdim} (A_v). </math>
- Mapping class groups of orientable finite type surfaces have finite asymptotic dimension.[11]
- Let <math>G</math> be a connected Lie group and let <math> \Gamma\le G</math> be a finitely generated discrete subgroup. Then <math> asdim(\Gamma)<\infty</math>.[12]
- It is not known if <math>Out(F_n)</math> has finite asymptotic dimension for <math>n>2</math>.[13]
References
Further reading
- ↑ Шаблон:Cite book
- ↑ 2,0 2,1 Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite book
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
Шаблон:Cite journal - ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal
- ↑ Шаблон:Cite journal Ch. 9.1