Английская Википедия:Bacon–Shor code

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

The Bacon–Shor code is a subsystem error correcting code.[1] In a subsystem code, information is encoded in a subsystem of a Hilbert space. Subsystem codes lend to simplified error correcting procedures unlike codes which encode information in the subspace of a Hilbert space.[2] This simplicity led to the first claim of fault tolerant circuit demonstration on a quantum computer.[3] It is named after Dave Bacon and Peter Shor.

Given the stabilizer generators of Shor's code: <math> \langle X_{0}X_{1}X_{2}X_{3}X_{4}X_{5}, X_{0}X_{1}X_{2}X_{6}X_{7}X_{8}, Z_{0}Z_{1}, Z_{1}Z_{2}, Z_{3}Z_{4}, Z_{4}Z_{5}, Z_{6}Z_{7}, Z_{7}Z_{8}\rangle</math>, 4 stabilizers can be removed from this generator by recognizing gauge symmetries in the code to get: <math> \langle X_{0}X_{1}X_{2}X_{3}X_{4}X_{5}, X_{0}X_{1}X_{2}X_{6}X_{7}X_{8}, Z_{0}Z_{1}Z_{3}Z_{4}Z_{6}Z_{7}, Z_{1}Z_{2}Z_{4}Z_{5}Z_{7}Z_{8} \rangle</math>.[4] Error correction is now simplified because 4 stabilizers are needed to measure errors instead of 8. A gauge group can be created from the stabilizer generators:<math>\langle Z_{1}Z_{2}, X_{2}X_{8}, Z_{4}Z_{5}, X_{5}X_{8}, Z_{0}Z_{1}, X_{0}X_{6}, Z_{3}Z_{4}, X_{3}X_{6}, X_{1}X_{7}, X_{4}X_{7}, Z_{6}Z_{7}, Z_{7}Z_{8}\rangle </math>.[4] Given that the Bacon–Shor code is defined on a square lattice where the qubits are placed on the vertices; laying the qubits on a grid in a way that corresponds to the gauge group shows how only 2 qubit nearest-neighbor measurements are needed to infer the error syndromes. The simplicity of deducing the syndromes reduces the overheard for fault tolerant error correction.[5]

    ZZ   ZZ 
  q0---q1--q2
XX|  XX|   |XX
  |  ZZ| ZZ|
  q6--q7--q8
XX|  XX|   |XX
  |    |   |
  q3--q4--q5
   ZZ   ZZ

See also

References

Шаблон:Reflist Шаблон:Quantum computing