Английская Википедия:Beltrami identity

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Calculus

The Beltrami identity, named after Eugenio Beltrami, is a special case of the Euler–Lagrange equation in the calculus of variations.

The Euler–Lagrange equation serves to extremize action functionals of the form

<math>I[u]=\int_a^b L[x,u(x),u'(x)] \, dx \, ,</math>

where <math>a</math> and <math>b</math> are constants and <math>u'(x) = \frac{du}{dx}</math>.[1]

If <math>\frac{\partial L}{\partial x} = 0</math>, then the Euler–Lagrange equation reduces to the Beltrami identity,

Шаблон:Equation box 1 where Шаблон:Math is a constant.[2][note 1]

Derivation

By the chain rule, the derivative of Шаблон:Math is

<math> \frac{dL}{dx} = \frac{\partial L}{\partial x} \frac{dx}{dx} + \frac{\partial L}{\partial u} \frac{du}{dx} + \frac{\partial L}{\partial u'} \frac{du'}{dx} \, . </math>

Because <math> \frac{\partial L}{\partial x} = 0 </math>, we write

<math> \frac{dL}{dx} = \frac{\partial L}{\partial u} u' + \frac{\partial L}{\partial u'} u \, . </math>

We have an expression for <math> \frac{\partial L}{\partial u}</math> from the Euler–Lagrange equation,

<math> \frac{\partial L}{\partial u} = \frac{d}{dx} \frac{\partial L}{\partial u'} \, </math>

that we can substitute in the above expression for <math> \frac{dL}{dx}</math> to obtain

<math> \frac{dL}{dx} =u'\frac{d}{dx} \frac{\partial L}{\partial u'} + u\frac{\partial L}{\partial u'} \, . </math>

By the product rule, the right side is equivalent to

<math> \frac{dL}{dx} = \frac{d}{dx} \left( u' \frac{\partial L}{\partial u'} \right) \, . </math>

By integrating both sides and putting both terms on one side, we get the Beltrami identity,

<math> L - u'\frac{\partial L}{\partial u'} = C \, . </math>

Applications

Solution to the brachistochrone problem

Файл:Petite brachistochrone.gif
The solution to the brachistochrone problem is the cycloid.

An example of an application of the Beltrami identity is the brachistochrone problem, which involves finding the curve <math>y = y(x)</math> that minimizes the integral

<math> I[y] = \int_0^a \sqrt { {1+y'^{\, 2}} \over y } dx \, . </math>

The integrand

<math> L(y,y') = \sqrt{ {1+y'^{\, 2}} \over y } </math>

does not depend explicitly on the variable of integration <math>x</math>, so the Beltrami identity applies,

<math>L-y'\frac{\partial L}{\partial y'}=C \, .</math>

Substituting for <math>L</math> and simplifying,

<math> y(1+y'^{\, 2}) = 1/C^2 ~~\text {(constant)} \, , </math>

which can be solved with the result put in the form of parametric equations

<math>x = A(\phi - \sin \phi) </math>
<math>y = A(1 - \cos \phi) </math>

with <math>A</math> being half the above constant, <math>\frac{1}{2C^{2}}</math>, and <math>\phi</math> being a variable. These are the parametric equations for a cycloid.[3]

Solution to the catenary problem

Файл:Kette Kettenkurve Catenary 2008 PD.JPG
A chain hanging from points forms a catenary.

Consider a string with uniform density <math>\mu</math> of length <math>l</math> suspended from two points of equal height and at distance <math>D</math>. By the formula for arc length, <math display=block>l = \int_S dS = \int_{s_1}^{s_2} \sqrt{1+y'^2}dx, </math> where <math>S</math> is the path of the string, and <math>s_1</math> and <math>s_2</math> are the boundary conditions.

The curve has to minimize its potential energy <math display=block> U = \int_S g\mu y\cdot dS = \int_{s_1}^{s_2} g\mu y\sqrt{1+y'^2} dx, </math> and is subject to the constraint <math display=block> \int_{s_1}^{s_2} \sqrt{1+y'^2} dx = l ,</math> where <math>g</math> is the force of gravity.

Because the independent variable <math>x</math> does not appear in the integrand, the Beltrami identity may be used to express the path of the string as a separable first order differential equation

<math display=block>L - \frac{\partial L}{\partial y\prime} = \mu gy\sqrt{1+y\prime ^2} + \lambda \sqrt{1+y\prime ^2} - \left[\mu gy\frac{y\prime ^2}{\sqrt{1+y\prime ^2}} + \lambda \frac{y\prime ^2}{\sqrt{1+y\prime ^2}}\right] = C,</math> where <math>\lambda</math> is the Lagrange multiplier.

It is possible to simplify the differential equation as such: <math display=block>\frac{g\rho y - \lambda }{\sqrt{1+y'^2}} = C.</math>

Solving this equation gives the hyperbolic cosine, where <math>C_0</math> is a second constant obtained from integration

<math display=block>y = \frac{C}{\mu g}\cosh \left[ \frac{\mu g}{C} (x + C_0) \right] - \frac{\lambda}{\mu g}. </math>

The three unknowns <math>C</math>, <math>C_0</math>, and <math>\lambda</math> can be solved for using the constraints for the string's endpoints and arc length <math>l</math>, though a closed-form solution is often very difficult to obtain.

Notes

  1. Thus, the Legendre transform of the Lagrangian, the Hamiltonian, is constant along the dynamical path.

References

Шаблон:Reflist

  1. Шаблон:Cite book
  2. Weisstein, Eric W. "Euler-Lagrange Differential Equation." From MathWorld--A Wolfram Web Resource. See Eq. (5).
  3. This solution of the Brachistochrone problem corresponds to the one in — Шаблон:Cite book