Английская Википедия:Berlekamp–Welch algorithm

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description The Berlekamp–Welch algorithm, also known as the Welch–Berlekamp algorithm, is named for Elwyn R. Berlekamp and Lloyd R. Welch. This is a decoder algorithm that efficiently corrects errors in Reed–Solomon codes for an RS(n, k), code based on the Reed Solomon original view where a message <math>m_1, \cdots, m_k</math> is used as coefficients of a polynomial <math>F(a_i)</math> or used with Lagrange interpolation to generate the polynomial <math>F(a_i)</math> of degree < k for inputs <math>a_1 , \cdots, a_k</math> and then <math>F(a_i)</math> is applied to <math>a_{k+1}, \cdots , a_n</math> to create an encoded codeword <math>c_1, \cdots , c_n</math>.

The goal of the decoder is to recover the original encoding polynomial <math>F(a_i)</math>, using the known inputs <math>a_1, \cdots , a_n</math> and received codeword <math>b_1, \cdots , b_n</math> with possible errors. It also computes an error polynomial <math>E(a_i)</math> where <math>E(a_i) = 0</math> corresponding to errors in the received codeword.

The key equations

Defining e = number of errors, the key set of n equations is

<math>b_i E(a_i) = E(a_i) F(a_i) </math>

Where E(ai) = 0 for the e cases when bi ≠ F(ai), and E(ai) ≠ 0 for the n - e non error cases where bi = F(ai) . These equations can't be solved directly, but by defining Q() as the product of E() and F():

<math>Q(a_i) = E(a_i) F(a_i) </math>

and adding the constraint that the most significant coefficient of E(ai) = ee = 1, the result will lead to a set of equations that can be solved with linear algebra.

<math>b_i E(a_i) = Q(a_i)</math>
<math>b_i E(a_i) - Q(a_i) = 0 </math>
<math>b_i(e_0 + e_1 a_i + e_2 a_i^2 + \cdots + e_e a_i^e) -(q_0 + q_1 a_i + q_2 a_i^2 + \cdots + q_q a_i^q) = 0</math>

where q = n - e - 1. Since ee is constrained to be 1, the equations become:

<math>b_i(e_0 + e_1 a_i + e_2 a_i^2 + \cdots + e_{e-1} a_i^{e-1}) -(q_0 + q_1 a_i + q_2 a_i^2 + \cdots + q_q a_i^q) = - b_i a_i^e</math>

resulting in a set of equations which can be solved using linear algebra, with time complexity <math>O(n^3)</math>.

The algorithm begins assuming the maximum number of errors e = ⌊(n-k)/2⌋. If the equations can not be solved (due to redundancy), e is reduced by 1 and the process repeated, until the equations can be solved or e is reduced to 0, indicating no errors. If Q()/E() has remainder = 0, then F() = Q()/E() and the code word values F(ai) are calculated for the locations where E(ai) = 0 to recover the original code word. If the remainder ≠ 0, then an uncorrectable error has been detected.

Example

Consider RS(7,3) (n = 7, k = 3) defined in Шаблон:Math with α = 3 and input values: ai = i-1 : {0,1,2,3,4,5,6}. The message to be systematically encoded is {1,6,3}. Using Lagrange interpolation, F(ai) = 3 x2 + 2 x + 1, and applying F(ai) for a4 = 3 to a7 = 6, results in the code word {1,6,3,6,1,2,2}. Assume errors occur at c2 and c5 resulting in the received code word {1,5,3,6,3,2,2}. Start off with e = 2 and solve the linear equations:

<math>\begin{bmatrix}
b_1 & b_1 a_1 & -1 & -a_1 & -a_1^2 & -a_1^3 & -a_1^4 \\
b_2 & b_2 a_2 & -1 & -a_2 & -a_2^2 & -a_2^3 & -a_2^4 \\
b_3 & b_3 a_3 & -1 & -a_3 & -a_3^2 & -a_3^3 & -a_3^4 \\
b_4 & b_4 a_4 & -1 & -a_4 & -a_4^2 & -a_4^3 & -a_4^4 \\
b_5 & b_5 a_5 & -1 & -a_5 & -a_5^2 & -a_5^3 & -a_5^4 \\
b_6 & b_6 a_6 & -1 & -a_6 & -a_6^2 & -a_6^3 & -a_6^4 \\
b_7 & b_7 a_7 & -1 & -a_7 & -a_7^2 & -a_7^3 & -a_7^4 \\

\end{bmatrix} \begin{bmatrix} e_0 \\ e_1 \\ q0 \\ q1 \\ q2 \\ q3 \\ q4 \\ \end{bmatrix} = \begin{bmatrix} -b_1 a_1^2\\ -b_2 a_2^2\\ -b_3 a_3^2\\ -b_4 a_4^2\\ -b_5 a_5^2\\ -b_6 a_6^2\\ -b_7 a_7^2\\ \end{bmatrix} </math>

<math>\begin{bmatrix}
1 & 0 & 6 & 0 & 0 & 0 & 0 \\
5 & 5 & 6 & 6 & 6 & 6 & 6 \\
3 & 6 & 6 & 5 & 3 & 6 & 5 \\
6 & 4 & 6 & 4 & 5 & 1 & 3 \\
3 & 5 & 6 & 3 & 5 & 6 & 3 \\
2 & 3 & 6 & 2 & 3 & 1 & 5 \\
2 & 5 & 6 & 1 & 6 & 1 & 6 \\

\end{bmatrix} \begin{bmatrix} e_0 \\ e_1 \\ q0 \\ q1 \\ q2 \\ q3 \\ q4 \\ \end{bmatrix} = \begin{bmatrix} 0\\ 2\\ 2\\ 2\\ 1\\ 6\\ 5\\ \end{bmatrix} </math>

<math>\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\

\end{bmatrix} \begin{bmatrix} e_0 \\ e_1 \\ q0 \\ q1 \\ q2 \\ q3 \\ q4 \\ \end{bmatrix} = \begin{bmatrix} 4\\ 2\\ 4\\ 3\\ 3\\ 1\\ 3\\ \end{bmatrix} </math>

Starting from the bottom of the right matrix, and the constraint e2 = 1:

<math>Q(a_i) = 3 x^4 + 1 x^3 + 3 x^2 + 3x + 4</math>

<math>E(a_i) = 1 x^2 + 2 x + 4</math>

<math>F(a_i) = Q(a_i) / E(a_i) = 3 x^2 + 2 x + 1</math> with remainder = 0.

E(ai) = 0 at a2 = 1 and a5 = 4 Calculate F(a2 = 1) = 6 and F(a5 = 4) = 1 to produce corrected code word {1,6,3,6,1,2,2}.

See also

External links