Английская Википедия:Better-quasi-ordering

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

In order theory a better-quasi-ordering or bqo is a quasi-ordering that does not admit a certain type of bad array. Every better-quasi-ordering is a well-quasi-ordering.

Motivation

Though well-quasi-ordering is an appealing notion, many important infinitary operations do not preserve well-quasi-orderedness. An example due to Richard Rado illustrates this.[1] In a 1965 paper Crispin Nash-Williams formulated the stronger notion of better-quasi-ordering in order to prove that the class of trees of height ω is well-quasi-ordered under the topological minor relation.[2] Since then, many quasi-orderings have been proven to be well-quasi-orderings by proving them to be better-quasi-orderings. For instance, Richard Laver established Laver's theorem (previously a conjecture of Roland Fraïssé) by proving that the class of scattered linear order types is better-quasi-ordered.[3] More recently, Carlos Martinez-Ranero has proven that, under the proper forcing axiom, the class of Aronszajn lines is better-quasi-ordered under the embeddability relation.[4]

Definition

It is common in better-quasi-ordering theory to write <math> {_*}x </math> for the sequence <math>x</math> with the first term omitted. Write <math>[\omega]^{<\omega}</math> for the set of finite, strictly increasing sequences with terms in <math>\omega</math>, and define a relation <math>\triangleleft</math> on <math>[\omega]^{<\omega}</math> as follows: <math>s\triangleleft t</math> if there is <math>u \in [\omega]^{<\omega}</math> such that <math>s</math> is a strict initial segment of <math>u</math> and <math>t={}_*u</math>. The relation <math>\triangleleft</math> is not transitive.

A block <math>B</math> is an infinite subset of <math>[\omega]^{<\omega}</math> that contains an initial segmentШаблон:Clarify of every infinite subset of <math>\bigcup B</math>. For a quasi-order <math>Q</math>, a <math>Q</math>-pattern is a function from some block <math>B</math> into <math>Q</math>. A <math>Q</math>-pattern <math>f\colon B\to Q</math> is said to be bad if <math>f(s)\not \le_Q f(t)</math>Шаблон:Clarify for every pair <math>s,t\in B</math> such that <math>s\triangleleft t</math>; otherwise <math>f</math> is good. A quasi-ordering <math>Q</math> is called a better-quasi-ordering if there is no bad <math>Q</math>-pattern.

In order to make this definition easier to work with, Nash-Williams defines a barrier to be a block whose elements are pairwise incomparable under the inclusion relation <math>\subset</math>. A <math>Q</math>-array is a <math>Q</math>-pattern whose domain is a barrier. By observing that every block contains a barrier, one sees that <math>Q</math> is a better-quasi-ordering if and only if there is no bad <math>Q</math>-array.

Simpson's alternative definition

Simpson introduced an alternative definition of better-quasi-ordering in terms of Borel functions <math>[\omega]^{\omega}\to Q</math>, where <math>[\omega]^{\omega}</math>, the set of infinite subsets of <math>\omega</math>, is given the usual product topology.[5]

Let <math>Q</math> be a quasi-ordering and endow <math>Q</math> with the discrete topology. A <math>Q</math>-array is a Borel function <math>[A]^{\omega}\to Q</math> for some infinite subset <math>A</math> of <math>\omega</math>. A <math>Q</math>-array <math>f</math> is bad if <math>f(X)\not\le_Q f({_*}X)</math> for every <math>X\in[A]^{\omega}</math>; <math>f</math> is good otherwise. The quasi-ordering <math>Q</math> is a better-quasi-ordering if there is no bad <math>Q</math>-array in this sense.

Major theorems

Many major results in better-quasi-ordering theory are consequences of the Minimal Bad Array Lemma, which appears in Simpson's paper[5] as follows. See also Laver's paper,[6] where the Minimal Bad Array Lemma was first stated as a result. The technique was present in Nash-Williams' original 1965 paper.

Suppose <math>(Q,\le_Q)</math> is a quasi-order.Шаблон:Clarify A partial ranking <math>\le'</math> of <math>Q</math> is a well-founded partial ordering of <math>Q</math> such that <math>q\le'r \to q \le_Q r</math>. For bad <math>Q</math>-arrays (in the sense of Simpson) <math>f\colon [A]^{\omega}\to Q</math> and <math>g\colon [B]^{\omega}\to Q</math>, define:

<math>g\le^* f \text{ if } B\subseteq A \text{ and } g(X)\le' f(X) \text{ for every } X\in[B]^{\omega}</math>
<math>g <^* f \text{ if } B\subseteq A \text{ and } g(X) <' f(X) \text{ for every } X\in[B]^{\omega}</math>

We say a bad <math>Q</math>-array <math>g</math> is minimal bad (with respect to the partial ranking <math>\le'</math>) if there is no bad <math>Q</math>-array <math>f</math> such that <math>f <^* g</math>. The definitions of <math>\le^*</math> and <math><'</math> depend on a partial ranking <math>\le'</math> of <math>Q</math>. The relation <math><^*</math> is not the strict part of the relation <math>\le^*</math>.

Theorem (Minimal Bad Array Lemma). Let <math>Q</math> be a quasi-order equipped with a partial ranking and suppose <math>f</math> is a bad <math>Q</math>-array. Then there is a minimal bad <math>Q</math>-array <math>g</math> such that <math>g \le^* f</math>.

See also

References

Шаблон:Reflist

Шаблон:Order theory

  1. Ошибка цитирования Неверный тег <ref>; для сносок Rado54 не указан текст
  2. Ошибка цитирования Неверный тег <ref>; для сносок Nash-Williams65 не указан текст
  3. Ошибка цитирования Неверный тег <ref>; для сносок Laver71 не указан текст
  4. Ошибка цитирования Неверный тег <ref>; для сносок Martinez-Ranero2011 не указан текст
  5. 5,0 5,1 Ошибка цитирования Неверный тег <ref>; для сносок Simpson85 не указан текст
  6. Ошибка цитирования Неверный тег <ref>; для сносок Laver78 не указан текст