Английская Википедия:Bilinear map

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example.

Definition

Vector spaces

Let <math>V, W </math> and <math>X</math> be three vector spaces over the same base field <math>F</math>. A bilinear map is a function <math display=block>B : V \times W \to X</math> such that for all <math>w \in W</math>, the map <math>B_w</math> <math display=block>v \mapsto B(v, w)</math> is a linear map from <math>V</math> to <math>X,</math> and for all <math>v \in V</math>, the map <math>B_v</math> <math display=block>w \mapsto B(v, w)</math> is a linear map from <math>W</math> to <math>X.</math> In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed.

Such a map <math>B</math> satisfies the following properties.

  • For any <math>\lambda \in F</math>, <math>B(\lambda v,w) = B(v, \lambda w) = \lambda B(v, w).</math>
  • The map <math>B</math> is additive in both components: if <math>v_1, v_2 \in V</math> and <math>w_1, w_2 \in W,</math> then <math>B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w)</math> and <math>B(v, w_1 + w_2) = B(v, w_1) + B(v, w_2).</math>

If <math>V = W</math> and we have Шаблон:Nowrap for all <math>v, w \in V,</math> then we say that B is symmetric. If X is the base field F, then the map is called a bilinear form, which are well-studied (for example: scalar product, inner product, and quadratic form).

Modules

The definition works without any changes if instead of vector spaces over a field F, we use modules over a commutative ring R. It generalizes to n-ary functions, where the proper term is multilinear.

For non-commutative rings R and S, a left R-module M and a right S-module N, a bilinear map is a map Шаблон:Nowrap with T an Шаблон:Nowrap-bimodule, and for which any n in N, Шаблон:Nowrap is an R-module homomorphism, and for any m in M, Шаблон:Nowrap is an S-module homomorphism. This satisfies

B(rm, n) = rB(m, n)
B(m, ns) = B(m, n) ⋅ s

for all m in M, n in N, r in R and s in S, as well as B being additive in each argument.

Properties

An immediate consequence of the definition is that Шаблон:Nowrap whenever Шаблон:Nowrap or Шаблон:Nowrap. This may be seen by writing the zero vector 0V as Шаблон:Nowrap (and similarly for 0W) and moving the scalar 0 "outside", in front of B, by linearity.

The set Шаблон:Nowrap of all bilinear maps is a linear subspace of the space (viz. vector space, module) of all maps from Шаблон:Nowrap into X.

If V, W, X are finite-dimensional, then so is Шаблон:Nowrap. For <math>X = F,</math> that is, bilinear forms, the dimension of this space is Шаблон:Nowrap (while the space Шаблон:Nowrap of linear forms is of dimension Шаблон:Nowrap). To see this, choose a basis for V and W; then each bilinear map can be uniquely represented by the matrix Шаблон:Nowrap, and vice versa. Now, if X is a space of higher dimension, we obviously have Шаблон:Nowrap.

Examples

Continuity and separate continuity

Suppose <math>X, Y,</math> and <math>Z</math> are topological vector spaces and let <math>b : X \times Y \to Z</math> be a bilinear map. Then b is said to be Шаблон:Visible anchor if the following two conditions hold:

  1. for all <math>x \in X,</math> the map <math>Y \to Z</math> given by <math>y \mapsto b(x, y)</math> is continuous;
  2. for all <math>y \in Y,</math> the map <math>X \to Z</math> given by <math>x \mapsto b(x, y)</math> is continuous.

Many separately continuous bilinear that are not continuous satisfy an additional property: hypocontinuity.Шаблон:Sfn All continuous bilinear maps are hypocontinuous.

Sufficient conditions for continuity

Many bilinear maps that occur in practice are separately continuous but not all are continuous. We list here sufficient conditions for a separately continuous bilinear map to be continuous.

Composition map

Шаблон:See also

Let <math>X, Y, \text{ and } Z</math> be locally convex Hausdorff spaces and let <math>C : L(X; Y) \times L(Y; Z) \to L(X; Z)</math> be the composition map defined by <math>C(u, v) := v \circ u.</math> In general, the bilinear map <math>C</math> is not continuous (no matter what topologies the spaces of linear maps are given). We do, however, have the following results:

Give all three spaces of linear maps one of the following topologies:

  1. give all three the topology of bounded convergence;
  2. give all three the topology of compact convergence;
  3. give all three the topology of pointwise convergence.
  • If <math>E</math> is an equicontinuous subset of <math>L(Y; Z)</math> then the restriction <math>C\big\vert_{L(X; Y) \times E} : L(X; Y) \times E \to L(X; Z)</math> is continuous for all three topologies.Шаблон:Sfn
  • If <math>Y</math> is a barreled space then for every sequence <math>\left(u_i\right)_{i=1}^{\infty}</math> converging to <math>u</math> in <math>L(X; Y)</math> and every sequence <math>\left(v_i\right)_{i=1}^{\infty}</math> converging to <math>v</math> in <math>L(Y; Z),</math> the sequence <math>\left(v_i \circ u_i\right)_{i=1}^{\infty}</math> converges to <math>v \circ u</math> in <math>L(Y; Z).</math> Шаблон:Sfn

See also

References

Шаблон:Reflist Шаблон:Reflist

Bibliography

External links

Шаблон:Functional Analysis Шаблон:Authority control