Английская Википедия:Binary compounds of silicon

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Файл:Diagramme binaire Fe Si analyse thermique 30.svg
Experimental iron-silicon phase diagram

Binary compounds of silicon are binary chemical compounds containing silicon and one other chemical element.[1] Technically the term silicide is reserved for any compounds containing silicon bonded to a more electropositive element. Binary silicon compounds can be grouped into several classes. Saltlike silicides are formed with the electropositive s-block metals. Covalent silicides and silicon compounds occur with hydrogen and the elements in groups 10 to 17.

Transition metals form metallic silicides, with the exceptions of silver, gold and the group 12 elements. The general composition is MnSi or MSin with n ranging from 1 to 6 and M standing for metal. Examples are M5Si, M3Si (Cu, V, Cr, Mo, Mn, Fe, Pt, U), M2Si (Zr, Hf, Ta, Ir, Ru, Rh, Co, Ni, Ce), M3Si2 (Hf, Th, U), MSi (Ti, Zr, Hf, Fe, Ce, Th, Pu) and MSi2 (Ti, V, Nb, Ta, Cr, Mo, W, Re).

The Kopp–Neumann law applies; heat capacities are linear in the proportion of silicon: <math chem display=block>C_p(\ce{M_xSi_y})=xC_p(\ce{M})+yC_p(\ce{Si})</math>

As a general rule, nonstochiometry implies instability. These intermetallics are in general resistant to hydrolysis, brittle, and melt at a lower temperature than the corresponding carbides or borides. They are electrical conductors. However, some, such as CrSi2, Mg2Si, β-FeSi2 and MnSi1.7, are semiconductors. Since degenerate semiconductors exhibit some metallic properties, such as luster and electrical conductivity which decreases with temperature, some silicides classified as metals may be semiconductors.

Group 1

Silicides of group 1 elements are saltlike silicides, except for silane (SiH4) whose bonds to hydrogen are covalent. Higher silane homologues are disilane and trisilane. Polysilicon hydride is a two-dimensional polymer network.

Many cluster compounds of lithium silicides are known, such as Li13Si4, Li22Si5, Li7Si3 and Li12Si7.[2] Li4.4Si is prepared from silicon and lithium metal in high-energy Ball mill process.[3] Potential uses include electrodes in lithium batteries. Li12Si7 has a Zintl phase with planar Si56− rings. Li NMR spectroscopy suggests these rings are aromatic.[4]

Other group 1 elements also form clusters: sodium silicide can be represented by NaSi, NaSi2 and Na11Si36[5] and potassium silicide by K8Si46. Group 1 silicides are in general high melting, metallic grey, with moderate to poor electrical conductance and prepared by heating the elements. Superconducting properties have been reported for Ba8Si46.[6] Several silicon Zintl ions (Шаблон:Chem, Шаблон:Chem, Шаблон:Chem) are known with group 1 counterions.[7]

Group 2

Silicides of group 2 elements are also saltlike silicides except for beryllium whose phase diagram with silicon is a simple eutectic (1085 °C @ 60% by weight silicon).[8] Again there is variation in composition: magnesium silicide is represented by Mg2Si,[9] calcium silicide can be represented by Ca2Si, CaSi, CaSi2, Ca5Si3 and by Ca14Si19,[10] strontium silicide can be represented by Sr2Si, SrSi2 and Sr5Si3[11] and barium silicide can be represented by Ba2Si, BaSi2, Ba5Si3 and Ba3Si4.[12] Mg2Si, and its solid solutions with Mg2Ge and Mg2Sn, are good thermoelectric materials and their figure of merit values are comparable with those of established materials.

Transition and inner transition metals

The transition metals form a wide range of silicon intermetallics with at least one binary crystalline phase. Some exceptions exist. Gold forms a eutectic at 363 °C with 2.3% silicon by weight (18% atom percent) without mutual solubility in the solid state.[13] Silver forms another eutectic at 835 °C with 11% silicon by weight, again with negligible mutual solid state solubility. In group 12 all elements form a eutectic close to the metal melting point without mutual solid-state solubility: zinc at 419 °C and > 99 atom percent zinc and cadmium at 320 °C (< 99% Cd).

Commercially relevant intermetallics are group 6 molybdenum disilicide, a commercial ceramic mostly used as an heating element. Tungsten disilicide is also a commercially available ceramic with uses in microelectronics. Platinum silicide is a semiconductor material. Ferrosilicon is an iron alloy that also contains some calcium and aluminium.

MnSi, known as brownleeite, can be found in outer space. Several Mn silicides form a Nowotny phase. Nanowires based on silicon and manganese can be synthesised from Mn(CO)5SiCl3 forming nanowires based on Mn19Si33.[14] or grown on a silicon surface[15][16][17] MnSi1.73 was investigated as thermoelectric material[18] and as an optoelectronic thin film.[19] Single-crystal MnSi1.73 can form from a tin-lead melt[20]

In the frontiers of technological research, iron disilicide is becoming more and more relevant to optoelectronics, specially in its crystalline form β-FeSi2.[21][22] They are used as thin films or as nanoparticles, obtained by means of epitaxial growth on a silicon substrate.[23][24]

Atomic number Name Symbol Group Period Block Phases
21 Scandium Sc 3 4 d Sc5Si3, ScSi, Sc2Si3,[25][26][27][28]
22 Titanium Ti 4 4 d Ti5Si3, TiSi, TiSi2, TiSi3, Ti6Si4[25]
23 Vanadium V 5 4 d V3Si, V5Si3, V6Si5, VSi2, V6Si5[25][29]
24 Chromium Cr 6 4 d Cr3Si, Cr5Si3, CrSi, CrSi2[25][30]
25 Manganese Mn 7 4 d MnSi, Mn9Si2, Mn3Si, Mn5Si3, Mn11Si9[25]
26 Iron Fe 8 4 d FeSi2, FeSi[31][32] [[Xifengite|Шаблон:Chem2]], Fe2Si, Fe3Si
27 Cobalt Co 9 4 d CoSi, CoSi2, Co2Si, Co2Si, Co3Si[33][34]
28 Nickel Ni 10 4 d Ni3Si, Ni31Si12, Ni2Si, Ni3Si2, NiSi (Nickel monosilicide), NiSi2[25][35]
29 Copper Cu 11 4 d Cu17Si3, Cu56Si11,Cu5Si, Cu33Si7, Cu4Si, Cu19Si6,Cu3Si,Cu87Si13[25][36]
30 Zinc Zn 12 4 d eutectic[37]
39 Yttrium Y 3 4 d Y5Si3, Y5Si4, YSi, Y3Si5,[38][39] YSi1.4.[40]
40 Zirconium Zr 4 5 d Zr5Si3, Zr5Si4, ZrSi, ZrSi2,[25] Zr3Si2, Zr2Si, Zr3Si[41]
41 Niobium Nb 5 5 d Nb5Si3, Nb4Si[25]
42 Molybdenum Mo 6 5 d Mo3Si, Mo5Si3, MoSi2[25]
43 Technetium Tc 7 5 d Tc4Si7 (proposed)[42]
44 Ruthenium Ru 8 5 d Ru2Si, Ru4Si3, RuSi, Ru2Si3[43][44]
45 Rhodium Rh 9 5 d RhSi,[45] Rh2Si, Rh5Si3, Rh3Si2, Rh20Si13[46]
46 Palladium Pd 10 5 d Pd5Si, Pd9Si2, Pd3Si, Pd2Si, PdSi[47]
47 Silver Ag 11 5 d eutectic[48]
48 Cadmium Cd 12 5 d eutectic[49]
57 Lanthanum La 6 f La5Si3, La3Si2, La5Si4, LaSi, LaSi2[50]
58 Cerium Ce 6 f Ce5Si3, Ce3Si2, Ce5Si4, CeSi,[51] Ce3Si5, CeSi2[52]
59 Praseodymium Pr 6 f Pr5Si3, Pr3Si2, Pr5Si4, PrSi, PrSi2[53]
60 Neodymium Nd 6 f Nd5Si3, Nd5Si4, Nd5Si3,NdSi, Nd3Si4, Nd2Si3, NdSix[54]
61 Promethium Pm 6 f
62 Samarium Sm 6 f Sm5Si4, Sm5Si3, SmSi, Sm3Si5, SmSi2[55]
63 Europium Eu 6 f
64 Gadolinium Gd 6 f Gd5Si3, Gd5Si4, GdSi, GdSi2[56]
65 Terbium Tb 6 f Si2Tb (terbium silicide), SiTb, Si4Tb5, Si3Tb5[57]
66 Dysprosium Dy 6 f Dy5Si5, DySi, DySi2[58]
67 Holmium Ho 6 f Ho5Si3,Ho5Si4,HoSi,Ho4Si5,HoSi2[59]
68 Erbium Er 6 f Er5Si3, Er5Si4, ErSi, ErSi2[60]
69 Thulium Tm 6 f
70 Ytterbium Yb 6 f Si1.8Yb,Si5Yb3,Si4Yb3, SiYb, Si4Yb5, Si3Yb5[61]
71 Lutetium Lu 3 6 d Lu5Si3[62]
72 Hafnium Hf 4 6 d Hf2Si, Hf3Si2, HfSi, Hf5Si4, HfSi2[25][63]
73 Tantalum Ta 5 6 d Ta9Si2, Ta3Si, Ta5Si3[25]
74 Tungsten W 6 6 d W5Si3, WSi2[64]
75 Rhenium Re 7 6 d Re2Si, ReSi, ReSi1.8[65] Re5Si3[25]
76 Osmium Os 8 6 d OsSi, Os2Si3, OsSi2[66]
77 Iridium Ir 9 6 d IrSi, Ir4Si5, Ir3Si4, Ir3Si5, IrSi3. Ir2Si3, Ir4Si7, IrSi2[67][68]
78 Platinum Pt 10 6 d Pt25Si7, Pt17Si8, Pt6Si5, Pt5Si2, Pt3Si, Pt2Si, PtSi[69]
79 Gold Au 11 6 d Eutectic diagram at link[70]
80 Mercury Hg 12 6 d eutectic[71]
89 Actinium Ac 7 f
90 Thorium Th 7 f Th3Si2, ThSi, Th3Si5, and ThSi2−x[72]
91 Protactinium Pa 7 f
92 Uranium U 7 f U3Si, U3Si2, USi, U3Si5, USi2−x, USi2 and USi3[73]
93 Neptunium Np 7 f NpSi3, Np3Si2, and NpSi[74]
94 Plutonium Pu 7 f Pu5Si3, Pu3Si2, PuSi, Pu3Si5 and PuSi2[75]
95 Americium Am 7 f AmSi, AmSi2[76]
96 Curium Cm 7 f CmSi, Cm2Si3, CmSi2[77]
97 Berkelium Bk 7 f
98 Californium Cf 7 f
99 Einsteinium Es 7 f
100 Fermium Fm 7 f
101 Mendelevium Md 7 f
102 Nobelium No 7 f
103 Lawrencium Lr 3 7 d
104 Rutherfordium Rf 4 7 d
105 Dubnium Db 5 7 d
106 Seaborgium Sg 6 7 d
107 Bohrium Bh 7 7 d
108 Hassium Hs 8 7 d
109 Meitnerium Mt 9 7 d
110 Darmstadtium Ds 10 7 d
111 Roentgenium Rg 11 7 d
112 Copernicium Cn 12 7 d

Group 13

In group 13 boron (a metalloid) forms several binary crystalline silicon boride compounds: SiB3, SiB6, SiBn.[78] With aluminium, a post-transition metal, a eutectic is formed (577 °C @ 12.2 atom % Al) with maximum solubility of silicon in solid aluminium of 1.5%. Commercially relevant aluminium alloys containing silicon have at least element added.[79] Gallium, also a post-transition metal, forms a eutectic at 29 °C with 99.99% Ga without mutual solid-state solubility;[80] indium[81] and thallium[82] behave similarly.

Group 14

Silicon carbide (SiC) is widely used as a ceramic or example in car brakes and bulletproof vests. It is also used in semiconductor electronics. It is manufactured from silicon dioxide and carbon in an Acheson furnace between 1600 and 2500 °C. There are 250 known crystalline forms with alpha silicon carbide the most common. Silicon itself is an important semiconductor material used in microchips. It is produced commercially from silica and carbon at 1900 °C and crystallizes in a diamond cubic crystal structure. Germanium silicide forms a solid solution and is again a commercially used semiconductor material.[83] The tin–silicon phase diagram is a eutectic[84] and the lead–silicon phase diagram shows a monotectic transition and a small eutectic transition but no solid solubility.[85]

Group 15

Silicon nitride (Si3N4) is a ceramic with many commercial high-temperature applications such as engine parts. It can be synthesized from the elements at temperatures between 1300 and 1400 °C. Three different crystallographic forms exist. Other binary silicon nitrogen compounds have been proposed (SiN, Si2N3, Si3N)[86] and other SiN compounds have been investigated at cryogenic temperatures (SiN2, Si(N2)2, SiNNSi).[87] Silicon tetraazide is an unstable compound that easily detonates.

The phase diagram with phosphorus shows SiP and SiP2.[88] A reported silicon phosphide is Si12P5 (no practical applications),[89][90] formed by annealing an amorphous Si-P alloy.

The arsenic–silicon phase diagram measured at 40 Bar has two phases: SiAs and SiAs2.[91] The antimony–silicon system comprises a single eutectic close to the melting point of Sb.[92] The bismuth system is a monotectic.[93]

Group 16

In group 16 silicon dioxide is a very common compound that widely occurs as sand or quartz. SiO2 is tetrahedral with each silicon atom surrounded by 4 oxygen atoms. Numerous crystalline forms exist with the tetrahedra linked to form a polymeric chain. Examples are tridymite and cristobalite. A less common oxide is silicon monoxide that can be found in outer space. Unconfirmed reports exist for nonequilibrium Si2O, Si3O2, Si3O4, Si2O3 and Si3O5.[94] Silicon sulfide is also a chain compound. Cyclic SiS2 has been reported to exist in the gas phase.[95] The phase diagram of silicon with selenium has two phases: SiSe2 and SiSe.[96] Tellurium silicide is a semiconductor with formula TeSi2 or Te2Si3.[97]

Group 17

Binary silicon compounds in group 17 are stable compounds ranging from gaseous silicon fluoride (SiF4) to the liquids silicon chloride (SiCl4 and silicon bromide SiBr4) to the solid silicon iodide (SiI4). The molecular geometry in these compounds is tetrahedral and the bonding mode covalent. Other known stable fluorides in this group are Si2F6, Si3F8 (liquid) and polymeric solids known as polysilicon fluorides (SiF2)x and (SiF)x. The other halides form similar binary silicon compounds.[98]

The periodic table of the binary silicon compounds

SiH4 He
LiSi Be SiB3 SiC Si3N4 SiO2 SiF4 Ne
NaSi Mg2Si Al Si SiP SiS2 SiCl4 Ar
KSi CaSi2 ScSi TiSi V5Si3 Cr5Si3 MnSi FeSi CoSi NiSi Cu5Si Zn Ga Si1−xGex SiAs SiSe2 SiBr4 Kr
RbSi Sr2Si YSi ZrSi Nb5Si3 Mo5Si3 Tc RuSi RhSi PdSi Ag Cd In Sn Sb TeSi2 SiI4 Xe
CsSi Ba2Si LuSi HfSi Ta5Si3 W5Si3 ReSi2 OsSi IrSi PtSi Au Hg Tl Pb Bi Po At Rn
Fr Ra Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
LaSi CeSi PrSi NdSi Pm SmSi EuSi GdSi TbSi DySi HoSi ErSi Tm YbSi
Ac ThSi Pa USi NpSi PuSi AmSi CmSi Bk Cf Es Fm Md No
Binary compounds of silicon
Covalent silicon compounds metallic silicides.
Ionic silicides Do not exist
Eutectic / monotectic / solid solution Unknown / Not assessed

References

Шаблон:Reflist

Шаблон:Silicon compounds Шаблон:Chemical compounds by element

  1. Inorganic chemistry, Egon Wiberg, Nils Wiberg, Arnold Frederick Holleman
  2. Шаблон:Cite journal
  3. Solid state ionics for batteries, Tsutomu Minami, Masahiro Tatsumisago
  4. Шаблон:Cite journal
  5. Шаблон:Cite journal
  6. Шаблон:Cite journal
  7. Шаблон:Cite journal
  8. Шаблон:Cite journal
  9. Шаблон:Cite journal
  10. Шаблон:Cite journal
  11. Шаблон:Cite journal
  12. Шаблон:Cite journal
  13. Constitution of Binary Alloys, second edition, Max Hansen and Kurt Anderko, McGraw-Hill Book Co., (NY NY 1958) p. 232 and EG Heath, J. of Electro Control, 11, 1961, pp 13-15 as summarized in Constitution of Binary Alloys, First Supplement, Elliott, McGraw-Hill Book Inc., (NY NY 1965) p. 103
  14. Шаблон:Cite journal
  15. Шаблон:Cite journal
  16. Шаблон:Cite journal
  17. Шаблон:Cite journal
  18. Шаблон:Cite journal
  19. Шаблон:Cite journal
  20. Шаблон:Cite journal
  21. Wetzig, Klaus; Schneider, Claus Michael (eds.). Metal based thin films for electronics.Шаблон:Dead link Wiley-VCH, 2006 (2nd edition), p. 64. Шаблон:ISBN
  22. A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm. D. Leong, M. Harry, K. J. Reeson and K. P. Homewood. Nature 387, 686-688, 12 June 1997.
  23. Шаблон:Cite journal
  24. Шаблон:Cite journal
  25. 25,00 25,01 25,02 25,03 25,04 25,05 25,06 25,07 25,08 25,09 25,10 25,11 25,12 Шаблон:Cite journal
  26. Шаблон:Cite journal
  27. Шаблон:Cite journal
  28. Шаблон:Cite journal
  29. Шаблон:Cite journal
  30. Шаблон:Cite journal
  31. Шаблон:Cite journal
  32. Шаблон:Cite journal
  33. Шаблон:Cite journal
  34. Шаблон:Cite journal
  35. Шаблон:Cite journal
  36. Шаблон:Cite journal
  37. Шаблон:Cite journal
  38. Шаблон:Cite journal
  39. Шаблон:Cite journal
  40. Шаблон:Cite journal
  41. Шаблон:Cite journal
  42. Шаблон:Cite journal
  43. Шаблон:Cite journal
  44. Шаблон:Cite journal
  45. Шаблон:Cite journal
  46. Шаблон:Cite journal
  47. Шаблон:Cite journal
  48. Шаблон:Cite journal
  49. Шаблон:Cite journal
  50. Шаблон:Cite journal
  51. Шаблон:Cite journal
  52. Шаблон:Cite journal
  53. Шаблон:Cite journal
  54. Шаблон:Cite journal
  55. Шаблон:Cite journal
  56. Шаблон:Cite journal
  57. Шаблон:Cite journal
  58. Шаблон:Cite journal
  59. Шаблон:Cite journal
  60. Шаблон:Cite journal
  61. Шаблон:Cite journal
  62. Шаблон:Cite journal
  63. Шаблон:Cite journal
  64. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds Lassner, Erik, Schubert, Wolf-Dieter 1999
  65. Шаблон:Cite journal
  66. Шаблон:Cite journal
  67. Шаблон:Cite journal
  68. Шаблон:Cite journal
  69. Шаблон:Cite journal
  70. Шаблон:Cite journal
  71. Шаблон:Cite journal
  72. as summarized in Constitution of Binary Alloys, Second Supplement, Francis A. Shunk, McGraw-Hill Book Inc., (NY NY 1969) p. 681-82.
  73. http://www.rertr.anl.gov/Web1999/PDF/18suripto.pdf Шаблон:Bare URL PDF
  74. Шаблон:Cite journal
  75. Шаблон:Cite journal
  76. Шаблон:Cite journal
  77. Шаблон:Cite journal
  78. Шаблон:Cite journal
  79. Шаблон:Cite journal
  80. Шаблон:Cite journal
  81. Шаблон:Cite journal
  82. Шаблон:Cite journal
  83. Шаблон:Cite journal
  84. Шаблон:Cite journal
  85. Шаблон:Cite journal
  86. Шаблон:Cite journal
  87. Шаблон:Cite journal
  88. Шаблон:Cite journal
  89. Шаблон:Cite journal
  90. Шаблон:Cite journal
  91. Шаблон:Cite journal
  92. Шаблон:Cite journal
  93. Шаблон:Cite journal
  94. Шаблон:Cite journal
  95. Шаблон:Cite journal
  96. Шаблон:Cite journal
  97. Шаблон:Cite journal
  98. Inorganic chemistry, Egon Wiberg, Nils Wiberg, Arnold Frederick Holleman 2001