Английская Википедия:Binary silicon-hydrogen compounds

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:Disilane.png
Chemical structure of disilane, which is structurally similar to ethane.

Silanes are saturated chemical compounds with the empirical formula Шаблон:Chem2. They are hydrosilanes, a class of compounds that includes compounds with Шаблон:Chem2 and other Шаблон:Chem2 bonds. All contain tetrahedral silicon and terminal hydrides. They only have Шаблон:Chem2 and Шаблон:Chem2 single bonds. The bond lengths are 146.0 pm for a Шаблон:Chem2 bond and 233 pm for a Шаблон:Chem2 bond. The structures of the silanes are analogues of the alkanes, starting with silane, Шаблон:Chem2, the analogue of methane, continuing with disilane Шаблон:Chem2, the analogue of ethane, etc. They are mainly of theoretical or academic interest.[1]

Inventory

Файл:Pentasilolane.svg
Cyclopentasilane is structurally similar to cyclopentane, just larger.

The simplest isomer of a silane is the one in which the silicon atoms are arranged in a single chain with no branches. This isomer is sometimes called the n-isomer (n for "normal", although it is not necessarily the most common). However the chain of silicon atoms may also be branched at one or more silicon atoms. The number of possible isomers increases rapidly with the number of silicon atoms. The members of the series (in terms of number of silicon atoms) follow:

Silanes are named by adding the suffix -silane to the appropriate numerical multiplier prefix. Hence, disilane, Шаблон:Chem2; trisilane Шаблон:Chem2; tetrasilane Шаблон:Chem2; pentasilane Шаблон:Chem2; etc. The prefix is generally Greek, with the exceptions of nonasilane which has a Latin prefix, and undecasilane and tridecasilane which have mixed-language prefixes. Solid phase polymeric silicon hydrides called polysilicon hydrides are also known. When hydrogen in a linear polysilene polysilicon hydride is replaced with alkyl or aryl side-groups, the term polysilane is used.

3-Silylhexasilane, Шаблон:Chem2, is the simplest chiral binary noncyclic silicon hydride.

Cyclosilanes also exist. They are structurally analogous to the cycloalkanes, with the formula Шаблон:Chem2, n > 2.

Data for small silanes[1]
Silane Formula Melting point [°C] Boiling point [°C] Density [g cm−3] (at 25 °C) Appearance
Silane Шаблон:Chem2 −185 −112 Colorless gas
Disilane Шаблон:Chem2 −132 −14 Colorless gas
Trisilane Шаблон:Chem2 −117 53 0.743 Colorless liquid
Шаблон:Ill Шаблон:Chem2
Шаблон:Ill Шаблон:Chem2 −90 108 0.793 Colorless liquid
Шаблон:Ill Шаблон:Chem2 −72.8 153 0.827 Colorless liquid
Cyclopentasilane Шаблон:Chem2 −10.5Шаблон:Clarify 194Шаблон:Clarify 0.963 Colorless liquid
Шаблон:Ill Шаблон:Chem2 −44.7 193.6 0.847 Colorless liquid

Production

Early work was conducted by Alfred Stock and Carl Somiesky.[2] Although monosilane and disilane were already known, Stock and Somiesky discovered, beginning in 1916, the next four members of the Шаблон:Chem2 series, up to n = 6. They also documented the formation of solid phase polymeric silicon hydrides.[3] One of their synthesis methods involved the hydrolysis of metal silicides. This method produces a mixture of silanes, which required separation on a high vacuum line.[4][5][6]

The silanes (Шаблон:Chem2) are less thermally stable than alkanes (Шаблон:Chem2). They tend to undergo dehydrogenation, yielding hydrogen and polysilanes. For this reason, the isolation of silanes higher than heptasilane has proved difficult.[7]

The Schlesinger process is used to prepare silanes by the reaction of perchlorosilanes with lithium aluminium hydride.

Applications

Шаблон:Main The single but significant application for Шаблон:Chem2 is in the microelectronics industry. By metal organic chemical vapor deposition, silane is converted to silicon by thermal decomposition:

Шаблон:Chem2

Hazards

Silane is explosive when mixed with air (1 – 98% Шаблон:Chem2Шаблон:Clarify). Other lower silanes can also form explosive mixtures with air. The lighter liquid silanes are highly flammable; this risk increases with the length of the silicon chain.

Considerations for detection/risk control:

  • Silane is slightly denser than air (possibility of pooling at ground levels/pits)
  • Disilane is denser than air (possibility of pooling at ground levels/pits)
  • Trisilane is denser than air (possibility of pooling at ground levels/pits)

Nomenclature

Шаблон:Main The IUPAC nomenclature (systematic way of naming compounds) for silanes is based on identifying hydrosilicon chains. Unbranched, saturated hydrosilicon chains are named systematically with a Greek numerical prefix denoting the number of silicons and the suffix "-silane".

IUPAC naming conventions can be used to produce a systematic name.

The key steps in the naming of more complicated branched silanes are as follows:

  • Identify the longest continuous chain of silicon atoms
  • Name this longest root chain using standard naming rules
  • Name each side chain by changing the suffix of the name of the silane from "-ane" to "-anyl", except for "silane" which becomes "silyl"
  • Number the root chain so that the sum of the numbers assigned to each side group will be as low as possible
  • Number and name the side chains before the name of the root chain

The nomenclature parallels that of alkyl radicals.

Silanes can also be named like any other inorganic compound; in this naming system, silane is named silicon tetrahydride. However, with longer silanes, this becomes cumbersome.

See also

References

Шаблон:Reflist

Шаблон:Hydrides by group Шаблон:Authority control

pl:Krzemowodory

  1. 1,0 1,1 Шаблон:Greenwood&Earnshaw2nd
  2. E. Wiberg, Alfred Stock and the Renaissance of Inorganic Chemistry," Pure Appl. Chem., Vol. 49 (1977) pp. 691-700.
  3. J. W. Mellor, "A Comprehensive Treatise on Inorganic and Theoretical Chemistry," Vol. VI, Longman, Green and Co. (1947) pp. 223 - 227.
  4. Hydrides of Boron and Silicon. Ithaca (USA) 1933.
  5. Шаблон:Cite journal
  6. Шаблон:Cite book
  7. W. W. Porterfield "Inorganic Chemistry: A Unified Approach," Academic Press (1993) p. 219.