Английская Википедия:Bockstein spectral sequence

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

In mathematics, the Bockstein spectral sequence is a spectral sequence relating the homology with mod p coefficients and the homology reduced mod p. It is named after Meyer Bockstein.

Definition

Let C be a chain complex of torsion-free abelian groups and p a prime number. Then we have the exact sequence:

<math>0 \longrightarrow C \overset{p}\longrightarrow C \overset{\text{mod} p} \longrightarrow C \otimes \Z/p \longrightarrow 0.</math>

Taking integral homology H, we get the exact couple of "doubly graded" abelian groups:

<math>H_*(C) \overset{i = p} \longrightarrow H_*(C) \overset{j} \longrightarrow H_*(C \otimes \Z/p) \overset{k} \longrightarrow.</math>

where the grading goes: <math>H_*(C)_{s,t} = H_{s+t}(C)</math> and the same for <math>H_*(C \otimes \Z/p),\deg i = (1, -1), \deg j = (0, 0), \deg k = (-1, 0).</math>

This gives the first page of the spectral sequence: we take <math>E_{s,t}^1 = H_{s+t}(C \otimes \Z/p)</math> with the differential <math>{}^1 d = j \circ k</math>. The derived couple of the above exact couple then gives the second page and so forth. Explicitly, we have <math>D^r = p^{r-1} H_*(C)</math> that fits into the exact couple:

<math>D^r \overset{i=p}\longrightarrow D^r \overset{{}^r j} \longrightarrow E^r \overset{k}\longrightarrow </math>

where <math>{}^r j = (\text{mod } p) \circ p^{-{r+1}}</math> and <math>\deg ({}^r j) = (-(r-1), r - 1)</math> (the degrees of i, k are the same as before). Now, taking <math>D_n^r \otimes -</math> of

<math>0 \longrightarrow \Z \overset{p}\longrightarrow \Z \longrightarrow \Z/p \longrightarrow 0,</math>

we get:

<math>0 \longrightarrow \operatorname{Tor}_1^{\Z}(D_n^r, \Z/p) \longrightarrow D_n^r \overset{p}\longrightarrow D_n^r \longrightarrow D_n^r \otimes \Z/p \longrightarrow 0</math>.

This tells the kernel and cokernel of <math>D^r_n \overset{p}\longrightarrow D^r_n</math>. Expanding the exact couple into a long exact sequence, we get: for any r,

<math>0 \longrightarrow (p^{r-1} H_n(C)) \otimes \Z/p \longrightarrow E^r_{n, 0} \longrightarrow \operatorname{Tor}(p^{r-1} H_{n-1}(C), \Z/p) \longrightarrow 0</math>.

When <math>r = 1</math>, this is the same thing as the universal coefficient theorem for homology.

Assume the abelian group <math>H_*(C)</math> is finitely generated; in particular, only finitely many cyclic modules of the form <math>\Z/p^s</math> can appear as a direct summand of <math>H_*(C)</math>. Letting <math>r \to \infty</math> we thus see <math>E^\infty</math> is isomorphic to <math>(\text{free part of } H_*(C)) \otimes \Z/p</math>.

References


Шаблон:Topology-stub