Английская Википедия:Borinic acid

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Chembox

Файл:Borinic-acid-2D.png
General chemical structure of borinic acids (organoborinic acids)
Файл:Borinate-ester-2D.png
General chemical structure of borinate esters

Borinic acid, also known as boronous acid, is an oxyacid of boron with formula Шаблон:Chem. Borinate is the associated anion of borinic acid with formula Шаблон:Chem; however, being a Lewis acid, the form in basic solution is Шаблон:Chem.

Borinic acid can be formed as the first step in the hydrolysis of diborane:[1]

BH3 + H2O H2BOH + H2

Borinic acid itself is unstable and only lasts for a few seconds during the hydrolysis reaction. However, by using microwave spectroscopy various properties can be determined. The B-O distance is 1.352 Å, O-H distance 0.96 Å, B-H length is probably 1.2 Å. The angle between bonds at the oxygen atom BOH = 112° and the angles at boron are cis-HBO 121°, and trans-HBO = 117°. The dipole moment is 1.506 Debye.[2]

Borinic acid can form esters such as methoxyborane. This too is unstable only lasting about ten seconds. It can be formed by heating diborane and methanol gas together.[3]

By substituting organic components instead of hydrogen, more generic borinic acids (containing RR'BOH) or borinic esters (RR'BOR") can be formed. Esters will tend to be stable in acidic conditions, but in alkaline conditions the boron atom can gain a negative charge and attach two hydroxyl groups, or two ester bonds. RR'B(OH)2 or RR'B(OR")2. The anionic borinate ion can very easily form esters with diols such as ethylene glycol or sugars.Шаблон:Citation needed

Naming

The IUPAC name borinic acid is a unique name for the acid.[4] The anhydrides are named diboroxanes, H2BOBH2, as the base compound and H being able to be substituted, e.g. tetraethyldiboroxane, as the anhydride for diethylborinic acid. Organic naming standard in the Bluebook allows skeletal replacement naming where the name is shorter, 3-borapentan-3-ol versus diethyl borinic acid. The grouping -BH-O-BH2 is called diboroxanyl. Substituting sulfur for oxygen gives borinothioic acid (H2BSH). (Dimethylboranyl)oxy is used for the group (CH3)2B-O− and methyl(hydroxy)boranyl for the grouping CH3B(OH)-.

Formation

There are several ways to produce substituted borinic acids.[5]

Firstly borinic acids can be made from oxidizing trialkyl borane starting materials [R3B] with exposure to moist air, or treatment with iodine, which makes a dialkyliodoborane [R2BI]. Hydrolysis then results in the boronic acid (R2BOH).[5] Trialkylborates [(RO)3B] or trialkoxyboroxine [(ROBO)3] can be reduced to borinic acid by us of a Grignard reagent. Grignard reagents can also reduce a boronic ester [RB(OR')2] to a borinic ester.[5]

Bu3B + N2CHCOR → BuCH=C(R)OBBu2
Bu3B + CH2=CHCOCH3 → BuCH2CH=C(CH3)OBBu2
RCOC2H5 + R2BOTf → RC(OBR2)=CHCH3
(Tf = Trifluoromethanesulfonate)

(Z)-Enolates give syn aldol product when reacted with an aldehyde, whereas (E)-enolates give and anti aldol products.

Dialkyl boron chloride (R2BCl) with tertiary amine react with ketones to form an enol borinate.[6]

A trialkoxyborane can react with lithium containing organic molecules to eliminate lithium and one or two alkoxy groups to make boronic and borinic esters.[7]

Purification of the mixtures that result from the reactions is required, as often boronic esters will also be produced and mixed in with the borinic esters.[5] The method of Letsinger is to dissolve the mixture in ether and precipitate the borinic ester by forming a complex with ammonia. Treatment with ethanolamine ends up making an aminoetylborinate.[5]

Compounds

R2BOR' borinic acid R'=H anhydride esters R'
R hydrogen -O- aminoethyl ethyl n-propyl n-butyl 3-methylpropyl 1-methylpropyl phenyl ethylene glycol methyl 8-quinolinyl
phenyl Шаблон:Tick [8] Шаблон:Tick cas 524-95-8 Шаблон:Tick cas 43185-52-0 Шаблон:Tick Шаблон:Tick cas 15323-04-3 Шаблон:Tick Шаблон:Tick Шаблон:Tick Шаблон:Tick cas 13471-36-8 SID 535455
o-tolyl Шаблон:Tick Шаблон:Tick
m-tolyl Шаблон:Tick
p-tolyl Шаблон:Tick[9] Шаблон:Tick
p-anisyl Шаблон:Tick Шаблон:Tick[10] Шаблон:Tick
p-biphenyl Шаблон:Tick Шаблон:Tick[11] Шаблон:Tick
p-chlorophenyl Шаблон:Tick cas 89566-59-6 Шаблон:Tick[12] Шаблон:Tick cas 61733-90-2 Шаблон:Tick cas 564483-61-0
3-chlorophenyl Шаблон:Tick cas 433338-06-8
α-naphthyl Шаблон:Tick Шаблон:Tick[13] Шаблон:Tick[14] cas 6962-88-5
β-naphthyl Шаблон:Tick Шаблон:Tick[10]
p-bromophenyl Шаблон:Tick Шаблон:Tick[10] Шаблон:Tick[15]
2-methyl-5-chlorophenyl Шаблон:Tick Шаблон:Tick[12]
2-thienyl [16] SID 3881207 SID 8142470
mesityl sid 4278417 CAS 20631-84-9[17][18][19]
methyl Шаблон:Tick cas 13061-97-7 Шаблон:Tick cas 86610-16-4 Шаблон:Tick cas 4443-43-0
ethyl Шаблон:Tick cas 4426-31-7 Шаблон:Tick[20] 7318-84-5 Шаблон:Tick cas 7397-46-8
allyl Шаблон:Tick
n-butyl Шаблон:Tick cas 1189-31-7 Шаблон:Tick[21] cas 19324-14-2 Шаблон:Tick cas 2344-21-0 Шаблон:Tick Шаблон:Tick Шаблон:Tick Шаблон:Tick Шаблон:Tick Шаблон:Tick cas 2344-21-0
4-methylbutyl Шаблон:Tick
2-chlorovinyl Шаблон:Tick Шаблон:Tick[22]
3,5-dimethylphenyl Шаблон:Tick[23]
propyl Шаблон:Tick cas 53678-60-7 Шаблон:Tick cas 2938-89-8
1-methylpropyl cas 4026-69-1
2-methylpropyl cas 4026-82-8

2-APB

Файл:2-Aminoethoxydiphenyl borate 3D spacefill.png
2-aminoethyl-diphenylborinate

2-Aminoethoxydiphenyl borate (2-APB) inhibits transient receptor potential channels.[24] This kind of inhibition, particularly inhibition of TRPM7, is being studied to find treatments for prostate cancer. 2-APB can work as a catalyst to add an alkyl group from an alkyl halide to a polyol or carbohydrate that contains a cis-vicinal diol to a precise position. It does this by first combining with the two hydroxy groups to make a ring containing OCCOB.[25] It can also calatlyse acid chloride or chloroformate reaction a specific region of the diol.[26]

Diphenylborinic acid

Diphenylborinic acid was discovered in 1894 by Michaelis who produced it by hydrolyzing the chloride. Letsinger determined its properties in 1955.[5]

Diphenylborinic acid has an extra high affinity for catechols compared with carbohydrates.[27]

Diphenylborinic acid can catalyse the condensation of pyruvic acids with aldehydes to yield substituted isotetronic acid.[28]

Diphenylborinic acid is an inhibitor of several enzymes such as α-chymotrypsin, subtilisin BPN', and trypsin.[29]

Borinate radical

Borinate radicals (RR'BO·) can be formed from peroxyborinate decomposition.[30]

Other compounds

Other compounds include methoxy(dimethyl)borane, methoxy(methyl)boron, methoxy(methylidene)borane (with a C=B double bond).[31]

[C5H5BR] uses a B to be equivalent to carbon in an aromatic benzene like ring. This too is called borinate. The 1-methyl and 1-phenyl borinates can form some of the few organo-thallium(I) compounds.[32]

HB(C6F5)2 + phosphino alcohol → tBu2P+HCH2C(CH3)2OBH(C6F5)2 → H2 + tBu2PCH2C(CH3)2OB(C6F5)2 and same for tBu2PCH2C(CF3)2OB(C6F5)2[33]

di-Tris(tert-butoxy)siloxy borinic acid HOB[OSi(O(t)Bu)3]2 can be made from tributoxyborate and tributoxysiloxane. It can form a very complex crystal with Cp2Zr(Me)[OB[OSi(O(t)Bu)3]2]2.[34]

Diborinic acids have two RBOH groups linked together by an organic connection such as diphenyl or phenyl.[35]

Applications

1,1,1,3,3,3-Hexafluoroisopropylbis(pentafluorophenyl)borinate can greatly increase solubility of LiF by complexing the F anion.[36] This has potential to improve lithium batteries.

Borinic esters are being researched as bacterial growth inhibitors[37] due to their ability to disable some bacterial enzymes such as menaquinone methyltransferase and CcrM.[38] This may result in development of treatments for topical application on skin.[39]

References

Шаблон:Reflist

Extra reading

Шаблон:Commons category