Английская Википедия:Bottema's theorem

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description

Файл:Bottema's theorem.png
Bottema's theorem construction; changing the location of vertex <math display="inline">C</math> changes the locations of vertices <math display="inline">E</math> and <math display="inline">F</math> but does not change the location of their midpoint <math display="inline">M</math>

Bottema's theorem is a theorem in plane geometry by the Dutch mathematician Oene Bottema (Groningen, 1901–1992).[1]

The theorem can be stated as follows: in any given triangle <math display="inline">ABC</math>, construct squares on any two adjacent sides, for example <math display="inline">AC</math> and <math display="inline">BC</math>. The midpoint of the line segment that connects the vertices of the squares opposite the common vertex, <math display="inline">C</math>, of the two sides of the triangle is independent of the location of <math display="inline">C</math>.[2]

The theorem is true when the squares are constructed in one of the following ways:

  • Looking at the figure, starting from the lower left vertex, <math display="inline">A</math>, follow the triangle vertices clockwise and construct the squares to the left of the sides of the triangle.
  • Follow the triangle in the same way and construct the squares to the right of the sides of the triangle.

If <math display="inline">S</math> is the projection of <math display="inline">M</math> onto <math display="inline">AB</math>, Then <math display="inline">AS=BS=MS</math>.

If the squares are replaced by regular polygons of the same type, then a generalized Bottema theorem is obtained: [3]

In any given triangle <math display="inline">ABC</math> construct two regular polygons on two sides <math display="inline">AC</math> and <math display="inline">BC</math>. Take the points <math>D_1</math> and <math>D_2</math> on the circumcircles of the polygons, which are diametrically opposed of the common vertex <math display="inline">C</math>. Then, the midpoint of the line segment <math>D_1D_2</math> is independent of the location of <math display="inline">C</math>.

See also

References

Шаблон:Reflist

External links


Шаблон:Elementary-geometry-stub Шаблон:Authority control