Английская Википедия:Buchstab function

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Файл:Buchstab-function-graph-from-1-to-4.png
Graph of the Buchstab function ω(u) from u = 1 to u = 4.

The Buchstab function (or Buchstab's function) is the unique continuous function <math>\omega: \R_{\ge 1}\rightarrow \R_{>0}</math> defined by the delay differential equation

<math>\omega(u)=\frac 1 u, \qquad\qquad\qquad 1\le u\le 2,</math>
<math>{\frac{d}{du}} (u\omega(u))=\omega(u-1), \qquad u\ge 2.</math>

In the second equation, the derivative at u = 2 should be taken as u approaches 2 from the right. It is named after Alexander Buchstab, who wrote about it in 1937.

Asymptotics

The Buchstab function approaches <math>e^{-\gamma} \approx 0.561</math> rapidly as <math>u\to\infty,</math> where <math>\gamma</math> is the Euler–Mascheroni constant. In fact,

<math>|\omega(u)-e^{-\gamma}|\le \frac{\rho(u-1)}{u}, \qquad u\ge 1,</math>

where ρ is the Dickman function.[1] Also, <math>\omega(u)-e^{-\gamma}</math> oscillates in a regular way, alternating between extrema and zeroes; the extrema alternate between positive maxima and negative minima. The interval between consecutive extrema approaches 1 as u approaches infinity, as does the interval between consecutive zeroes.[2]

Applications

The Buchstab function is used to count rough numbers. If Φ(xy) is the number of positive integers less than or equal to x with no prime factor less than y, then for any fixed u > 1,

<math>\Phi(x,x^{1/u}) \sim \omega(u)\frac{x}{\log x^{1/u}}, \qquad x\to\infty.</math>

Notes

Шаблон:Reflist

References

  1. (5.13), Jurkat and Richert 1965. In this paper the argument of ρ has been shifted by 1 from the usual definition.
  2. p. 131, Cheer and Goldston 1990.