Английская Википедия:CERN

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Other uses Шаблон:Pp-move Шаблон:Pp-semi-indef Шаблон:Use dmy dates Шаблон:Use Oxford spelling Шаблон:Infobox organization

The European Organization for Nuclear Research, known as CERN (Шаблон:IPAc-en; Шаблон:IPA-fr; Шаблон:Lang), is an intergovernmental organization that operates the largest particle physics laboratory in the world. Established in 1954, it is based in Meyrin, western suburb of Geneva, on the France–Switzerland border. It comprises 23 member states.[1] Israel, admitted in 2013, is the only non-European full member.[2][3] CERN is an official United Nations General Assembly observer.[4]

The acronym CERN is also used to refer to the laboratory; in 2019, it had 2,660 scientific, technical, and administrative staff members, and hosted about 12,400 users from institutions in more than 70 countries.[5] In 2016, CERN generated 49 petabytes of data.[6]

CERN's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics research – consequently, numerous experiments have been constructed at CERN through international collaborations. CERN is the site of the Large Hadron Collider (LHC), the world's largest and highest-energy particle collider.[7] The main site at Meyrin hosts a large computing facility, which is primarily used to store and analyze data from experiments, as well as simulate events. As researchers require remote access to these facilities, the lab has historically been a major wide area network hub. CERN is also the birthplace of the World Wide Web.[8][9]

History

Файл:Cernfounders.png
The 12 founding member states of CERN in 1954[10]

The convention establishing CERN[11] was ratified on 29 September 1954 by 12 countries in Western Europe.[12] The acronym CERN originally represented the French words for Шаблон:Lang ('European Council for Nuclear Research'), which was a provisional council for building the laboratory, established by 12 European governments in 1952. During these early years, the council worked at the University of Copenhagen under the direction of Niels Bohr before moving to its present site near Geneva. The acronym was retained for the new laboratory after the provisional council was dissolved, even though the name changed to the current Шаблон:Lang ('European Organization for Nuclear Research') in 1954.[13][14] According to Lew Kowarski, a former director of CERN, when the name was changed, the abbreviation could have become the awkward OERN,[15] and Werner Heisenberg said that this could "still be CERN even if the name is [not]".[16]

CERN's first president was Sir Benjamin Lockspeiser. Edoardo Amaldi was the general secretary of CERN at its early stages when operations were still provisional, while the first Director-General (1954) was Felix Bloch.[17]

The laboratory was originally devoted to the study of atomic nuclei, but was soon applied to higher-energy physics, concerned mainly with the study of interactions between subatomic particles. Therefore, the laboratory operated by CERN is commonly referred to as the European laboratory for particle physics (Шаблон:Lang), which better describes the research being performed there.Шаблон:Citation needed

Founding members

At the sixth session of the CERN Council, which took place in Paris from 29 June to 1 July 1953, the convention establishing the organization was signed, subject to ratification, by 12 states. The convention was gradually ratified by the 12 founding Member States: Belgium, Denmark, France, the Federal Republic of Germany, Greece, Italy, the Netherlands, Norway, Sweden, Switzerland, the United Kingdom, and Yugoslavia.[18]

Scientific achievements

Several important achievements in particle physics have been made through experiments at CERN. They include:

In September 2011, CERN attracted media attention when the OPERA Collaboration reported the detection of possibly faster-than-light neutrinos.[34] Further tests showed that the results were flawed due to an incorrectly connected GPS synchronization cable.[35]

The 1984 Nobel Prize for Physics was awarded to Carlo Rubbia and Simon van der Meer for the developments that resulted in the discoveries of the W and Z bosons.[36] The 1992 Nobel Prize for Physics was awarded to CERN staff researcher Georges Charpak "for his invention and development of particle detectors, in particular the multiwire proportional chamber". The 2013 Nobel Prize for Physics was awarded to François Englert and Peter Higgs for the theoretical description of the Higgs mechanism in the year after the Higgs boson was found by CERN experiments.

Computer science

Шаблон:See also Шаблон:Multiple image

CERN pioneered the introduction of Internet technology, beginning in the early 1980s. This played an influential role in the adoption of the TCP/IP in Europe (see Protocol Wars).[37]

The World Wide Web began as a project at CERN initiated by Tim Berners-Lee in 1989. This stemmed from his earlier work on a database named ENQUIRE. Robert Cailliau became involved in 1990.[38][39][40][41] Berners-Lee and Cailliau were jointly honoured by the Association for Computing Machinery in 1995 for their contributions to the development of the World Wide Web.[42] A copy of the original first webpage, created by Berners-Lee, is still published on the World Wide Web Consortium's website as a historical document.[43]

Based on the concept of hypertext, the project was designed to facilitate the sharing of information between researchers. The first website was activated in 1991. On 30 April 1993, CERN announced that the World Wide Web would be free to anyone. It became the dominant way through which most users interact with the Internet.[44][45]

More recently, CERN has become a facility for the development of grid computing, hosting projects including the Enabling Grids for E-sciencE (EGEE) and LHC Computing Grid. It also hosts the CERN Internet Exchange Point (CIXP), one of the two main internet exchange points in Switzerland. Шаблон:As of, CERN employs ten times more engineers and technicians than research physicists.[46]

Particle accelerators

Current complex

Шаблон:CERNaccelerators

Файл:Location Large Hadron Collider.PNG
Map of the Large Hadron Collider together with the Super Proton Synchrotron at CERN

CERN operates a network of seven accelerators and two decelerators, and some additional small accelerators. Each machine in the chain increases the energy of particle beams before delivering them to experiments or to the next more powerful accelerator (the decelerators naturally decrease the energy of particle beams before delivering them to experiments or further accelerators/decelerators). Before an experiment is able to use the network of accelerators, it must be approved by the various Scientific Committees of CERN.[47] Currently (as of 2022) active machines are the LHC accelerator and:

Large Hadron Collider

Шаблон:Main

Many activities at CERN currently involve operating the Large Hadron Collider (LHC) and the experiments for it. The LHC represents a large-scale, worldwide scientific cooperation project.[64]

Файл:View inside detector at the CMS cavern LHC CERN.jpg
CMS detector for LHC

The LHC tunnel is located 100 metres underground, in the region between Geneva International Airport and the nearby Jura mountains. The majority of its length is on the French side of the border. It uses the 27 km circumference circular tunnel previously occupied by the Large Electron–Positron Collider (LEP), which was shut down in November 2000. CERN's existing PS/SPS accelerator complexes are used to pre-accelerate protons and lead ions which are then injected into the LHC.

Eight experiments (CMS,[65] ATLAS,[66] LHCb,[67] MoEDAL,[68] TOTEM,[69] LHCf,[70] FASER[71] and ALICE[72]) are located along the collider; each of them studies particle collisions from a different aspect, and with different technologies. Construction for these experiments required an extraordinary engineering effort. For example, a special crane was rented from Belgium to lower pieces of the CMS detector into its cavern, since each piece weighed nearly 2,000 tons. The first of the approximately 5,000 magnets necessary for construction was lowered down a special shaft at 13:00 GMT on 7 March 2005.

The LHC has begun to generate vast quantities of data, which CERN streams to laboratories around the world for distributed processing (making use of a specialized grid infrastructure, the LHC Computing Grid). During April 2005, a trial successfully streamed 600 MB/s to seven different sites across the world.

The initial particle beams were injected into the LHC August 2008.[73] The first beam was circulated through the entire LHC on 10 September 2008,[74] but the system failed 10 days later because of a faulty magnet connection, and it was stopped for repairs on 19 September 2008.

The LHC resumed operation on 20 November 2009 by successfully circulating two beams, each with an energy of 3.5 teraelectronvolts (TeV). The challenge for the engineers was then to line up the two beams so that they smashed into each other. This is like "firing two needles across the Atlantic and getting them to hit each other" according to Steve Myers, director for accelerators and technology.

On 30 March 2010, the LHC successfully collided two proton beams with 3.5 TeV of energy per proton, resulting in a 7 TeV collision energy. However, this was just the start of what was needed for the expected discovery of the Higgs boson. When the 7 TeV experimental period ended, the LHC revved to 8 TeV (4 TeV per proton) starting March 2012, and soon began particle collisions at that energy. In July 2012, CERN scientists announced the discovery of a new sub-atomic particle that was later confirmed to be the Higgs boson.[75]

In March 2013, CERN announced that the measurements performed on the newly found particle allowed it to conclude that it was a Higgs boson.[76] In early 2013, the LHC was deactivated for a two-year maintenance period, to strengthen the electrical connections between magnets inside the accelerator and for other upgrades.

On 5 April 2015, after two years of maintenance and consolidation, the LHC restarted for a second run. The first ramp to the record-breaking energy of 6.5 TeV was performed on 10 April 2015.[77][78] In 2016, the design collision rate was exceeded for the first time.[79] A second two-year period of shutdown begun at the end of 2018.[80][81]

Accelerators under construction

As of October 2019, the construction is on-going to upgrade the LHC's luminosity in a project called High Luminosity LHC (HL–LHC). This project should see the LHC accelerator upgraded by 2026 to an order of magnitude higher luminosity.[82]

As part of the HL–LHC upgrade project, also other CERN accelerators and their subsystems are receiving upgrades. Among other work, the LINAC 2 linear accelerator injector was decommissioned and replaced by a new injector accelerator, the LINAC4.[83]

Decommissioned accelerators

Possible future accelerators

Шаблон:MainCERN, in collaboration with groups worldwide, is investigating two main concepts for future accelerators: A linear electron-positron collider with a new acceleration concept to increase the energy (CLIC) and a larger version of the LHC, a project currently named Future Circular Collider.[100]

Sites

Шаблон:Unreferenced section

Файл:CERN Building 40 (1).jpg
CERN building 40 at the Meyrin site.
Файл:Bldng40cropped.jpg
Interior of office building 40 at the Meyrin site. Building 40 hosts many offices for scientists from the CMS and ATLAS collaborations.

The smaller accelerators are on the main Meyrin site (also known as the West Area), which was originally built in Switzerland alongside the French border, but has been extended to span the border since 1965. The French side is under Swiss jurisdiction and there is no obvious border within the site, apart from a line of marker stones.

The SPS and LEP/LHC tunnels are almost entirely outside the main site, and are mostly buried under French farmland and invisible from the surface. However, they have surface sites at various points around them, either as the location of buildings associated with experiments or other facilities needed to operate the colliders such as cryogenic plants and access shafts. The experiments are located at the same underground level as the tunnels at these sites.

Three of these experimental sites are in France, with ATLAS in Switzerland, although some of the ancillary cryogenic and access sites are in Switzerland. The largest of the experimental sites is the Prévessin site, also known as the North Area, which is the target station for non-collider experiments on the SPS accelerator. Other sites are the ones which were used for the UA1, UA2 and the LEP experiments (the latter are used by LHC experiments).

Outside of the LEP and LHC experiments, most are officially named and numbered after the site where they were located. For example, NA32 was an experiment looking at the production of so-called "charmed" particles and located at the Prévessin (North Area) site while WA22 used the Big European Bubble Chamber (BEBC) at the Meyrin (West Area) site to examine neutrino interactions. The UA1 and UA2 experiments were considered to be in the Underground Area, i.e. situated underground at sites on the SPS accelerator.

Most of the roads on the CERN Meyrin and Prévessin sites are named after famous physicists, such as Wolfgang Pauli, who pushed for CERN's creation. Other notable names are Richard Feynman, Albert Einstein, and Bohr.

Participation and funding

Member states and budget

Since its foundation by 12 members in 1954, CERN regularly accepted new members. All new members have remained in the organization continuously since their accession, except Spain and Yugoslavia. Spain first joined CERN in 1961, withdrew in 1969, and rejoined in 1983. Yugoslavia was a founding member of CERN but quit in 1961. Of the 23 members, Israel joined CERN as a full member on 6 January 2014,[101] becoming the first (and currently only) non-European full member.[102]

The budget contributions of member states are computed based on their GDP.[103]

Member state Status since Contribution
(million CHF for 2019)
Contribution
(fraction of total for 2019)
Contribution per capitaШаблон:Refn
(CHF/person for 2017)
Founding MembersШаблон:Refn
Шаблон:BEL Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:DNK Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:FRA Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:DEU Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:GRC Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:ITA Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:NLD Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:NOR Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:SWE Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:CHE Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:GBR Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:YUGШаблон:Refn Шаблон:Dts[104][105] Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Acceded MembersШаблон:Refn
Шаблон:AUT Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:ESPШаблон:Refn Шаблон:Dts[105][106] Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:PRT Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:FIN Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:POL Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:HUN Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:CZE Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:SVK Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:BGR Шаблон:Dts Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:ISR Шаблон:Dts[101] Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:ROM Шаблон:Dts[107] Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Шаблон:SRB Шаблон:Dts[108] Шаблон:Nts Шаблон:Nts% Шаблон:Nts
Associate Members in the pre-stage to membership
Шаблон:CYP Шаблон:Dts[109] Шаблон:Nts N/A N/A
Шаблон:SLO Шаблон:Dts[110][111] Шаблон:Nts N/A N/A
Шаблон:EST Шаблон:Dts[112][113] Шаблон:Nts N/A N/A
Associate Members
Шаблон:TUR Шаблон:Dts[114] Шаблон:Nts N/A N/A
Шаблон:PAK Шаблон:Dts[115] Шаблон:Nts N/A N/A
Шаблон:UKR Шаблон:Dts[116] Шаблон:Nts N/A N/A
Шаблон:IND Шаблон:Dts[117] Шаблон:Nts N/A N/A
Шаблон:LIT Шаблон:Dts[118] Шаблон:Nts N/A N/A
Шаблон:CRO Шаблон:Dts[119] Шаблон:Nts N/A N/A
Шаблон:LAT Шаблон:Dts[120] N/A N/A
Шаблон:HsTotal Members, Candidates and Associates Шаблон:Nts[103][121] Шаблон:Nts% N/A

Шаблон:Reflist

Enlargement

Associate Members, Candidates:

  • Turkey signed an association agreement on 12 May 2014[122] and became an associate member on 6 May 2015.
  • Pakistan signed an association agreement on 19 December 2014[123] and became an associate member on 31 July 2015.[124][125]
  • Cyprus signed an association agreement on 5 October 2012 and became an associate member in the pre-stage to membership on 1 April 2016.[109]
  • Ukraine signed an association agreement on 3 October 2013. The agreement was ratified on 5 October 2016.[116]
  • India signed an association agreement on 21 November 2016.[126] The agreement was ratified on 16 January 2017.[117]
  • Slovenia was approved for admission as an Associate Member state in the pre-stage to membership on 16 December 2016.[110] The agreement was ratified on 4 July 2017.[111]
  • Lithuania was approved for admission as an Associate Member state on 16 June 2017. The association agreement was signed on 27 June 2017 and ratified on 8 January 2018.[127][118]
  • Croatia was approved for admission as an Associate Member state on 28 February 2019. The agreement was ratified on 10 October 2019.[119]
  • Estonia was approved for admission as an Associate Member in the pre-stage to membership state on 19 June 2020. The agreement was ratified on 1 February 2021.[112]
  • Latvia and CERN signed an associate membership agreement on 14 April 2021.[128] Latvia was formally admitted as an Associate Member on 2 August 2021.[120]

International relations

Three countries have observer status:[129]

  • Japan – since 1995
  • Russia – since 1993 (suspended as of March 2022)[130]
  • United States – since 1997

Also observers are the following international organizations:

Non-Member States (with dates of Co-operation Agreements) currently involved in CERN programmes are:[132][133]

Шаблон:Columns-list

CERN also has scientific contacts with the following other countries:[132][134]

Шаблон:Columns-list

International research institutions, such as CERN, can aid in science diplomacy.[135]

Associated institutions

Файл:ESO and CERN sign cooperation agreement.jpg
ESO and CERN have a cooperation agreement.[136]

A large number of institutes around the world are associated to CERN through current collaboration agreements and/or historical links.[137] The list below contains organizations represented as observers to the CERN Council, organizations to which CERN is an observer and organizations based on the CERN model:

.cern

Шаблон:Infobox Top level domain

.cern is a top-level domain for CERN.[145][146] It was registered on 13 August 2014.[147][148] On 20 October 2015 CERN moved its main Website to https://home.cern.[149][150]

Open science

The Open Science movement focuses on making scientific research openly accessible and on creating knowledge through open tools and processes. Open access, open data, open source software and hardware, open licenses, digital preservation and reproducible research are primary components of open science and areas in which CERN has been working towards since its formation.

CERN has developed a number of policies and official documents that enable and promote open science, starting with CERN's founding convention in 1953 which indicated that all its results are to be published or made generally available.[11] Since then, CERN published its open access policy in 2014,[151] which ensures that all publications by CERN authors will be published with gold open access and most recently an open data policy that was endorsed by the four main LHC collaborations (ALICE, ATLAS, CMS and LHCb).[152] The open data policy complements the open access policy, addressing the public release of scientific data collected by LHC experiments after a suitable embargo period. Prior to this open data policy, guidelines for data preservation, access and reuse were implemented by each collaboration individually through their own policies which are updated when necessary.[153][154][155][156] The European Strategy for Particle Physics, a document mandated by the CERN Council that forms the cornerstone of Europe's decision-making for the future of particle physics, was last updated in 2020 and affirmed the organisation's role within the open science landscape by stating: “The particle physics community should work with the relevant authorities to help shape the emerging consensus on open science to be adopted for publicly-funded research, and should then implement a policy of open science for the field”.[157]

Beyond the policy level, CERN has established a variety of services and tools to enable and guide open science at CERN, and in particle physics more generally. On the publishing side, CERN has initiated and operates a global cooperative project, the Sponsoring Consortium for Open Access Publishing in Particle Physics, SCOAP3, to convert scientific articles in high-energy physics to open access. Currently, the SCOAP3 partnership represents 3000+ libraries from 44 countries and 3 intergovernmental organizations who have worked collectively to convert research articles in high-energy physics across 11 leading journals in the discipline to open access.[158][159]

Public-facing results can be served by various CERN-based services depending on their use case: the CERN Open Data portal,[160] Zenodo, the CERN Document Server,[161] INSPIRE and HEPData[162] are the core services used by the researchers and community at CERN, as well as the wider high-energy physics community for the publication of their documents, data, software, multimedia, etc. CERN's efforts towards preservation and reproducible research are best represented by a suite of services addressing the entire physics analysis lifecycle (such as data, software and computing environment). CERN Analysis Preservation[163] helps researchers to preserve and document the various components of their physics analyses; REANA (Reusable Analyses)[164] enables the instantiating of preserved research data analyses on the cloud.

All of the abovementioned services are built using open source software and strive towards compliance with best effort principles where appropriate and where possible, such as the FAIR principles, the FORCE11 guidelines and Plan S, while at the same time taking into account relevant activities carried out by the European Commission.[165]

Public exhibits

Файл:CERN Globe of Science and Innovation.jpg
The Globe of Science and Innovation at CERN

The Globe of Science and Innovation, which opened in late 2005, is open to the public. It is used four times a week for special exhibits.

The Microcosm museum previously hosted another on-site exhibition on particle physics and CERN history. It closed permanently on 18 September 2022, in preparation for the installation of the exhibitions in Science Gateway.[166]

CERN also provides daily tours to certain facilities such as the Synchro-cyclotron (CERNs first particle accelerator) and the superconducting magnet workshop.

In 2004, a two-meter statue of the Nataraja, the dancing form of the Hindu god Shiva, was unveiled at CERN. The statue, symbolizing Shiva's cosmic dance of creation and destruction, was presented by the Indian government to celebrate the research center's long association with India.[167] A special plaque next to the statue explains the metaphor of Shiva's cosmic dance with quotations from physicist Fritjof Capra:

Hundreds of years ago, Indian artists created visual images of dancing Shivas in a beautiful series of bronzes. In our time, physicists have used the most advanced technology to portray the patterns of the cosmic dance. The metaphor of the cosmic dance thus unifies ancient mythology, religious art and modern physics.[168]

Arts at CERN

CERN launched its Cultural Policy for engaging with the arts in 2011.[169][170] The initiative provided the essential framework and foundations for establishing Arts at CERN, the arts programme of the Laboratory.

Since 2012, Arts at CERN has fostered creative dialogue between art and physics through residencies, art commissions, exhibitions and events. Artists across all creative disciplines have been invited to CERN to experience how fundamental science pursues the big questions about our universe.

Even before the arts programme officially started, several highly regarded artists visited the Laboratory, drawn to physics and fundamental science. As early as 1972, James Lee Byars was the first artist to visit the Laboratory and the only one, so far, to feature on the cover of the CERN Courier.[171] Mariko Mori,[172] Gianni Motti,[173] Cerith Wyn Evans,[174] John Berger[175] and Anselm Kiefer[176] are among the artists who came to CERN in the years that followed.

The programmes of Arts at CERN are structured according to their values and vision to create bridges between cultures. Each programme is designed and formed in collaboration with cultural institutions, other partner laboratories, countries, cities and artistic communities eager to connect with CERN's research, support their activities, and contribute to a global network of art and science.

They comprise research-led artistic residencies that take place on-site or remotely. More than 200 artists from 80 countries have participated in the residencies to expand their creative practices at the Laboratory, benefiting from the involvement of 400 physicists, engineers and CERN staff. Between 500 and 800 applications are received every year. The programmes comprise Collide, the international residency programme organised in partnership with a city; Connect, a programme of residencies to foster experimentation in art and science at CERN and in scientific organisations worldwide in collaboration with Pro Helvetia, and Guest Artists, a short stay for artists to stay to engage with CERN's research and community.[177][178]

In popular culture

Файл:Shiva's statue at CERN engaging in the Nataraja dance.jpg
The statue of Shiva engaging in the Nataraja dance (symbolizing his cosmic dance of creation and destruction) presented by the Department of Atomic Energy of India
Файл:CERN Tram, line number 18.jpg
Geneva tram 18 at CERN
  • The band Les Horribles Cernettes was founded by women from CERN. The name was chosen so to have the same initials as the LHC.[179][180]
  • The science journalist Katherine McAlpine made a rap video called "Large Hadron Rap" about CERN's Large Hadron Collider with some of the facility's staff.[181][182]
  • Particle Fever, a 2013 documentary, explores CERN throughout the inside and depicts the events surrounding the 2012 discovery of the Higgs Boson.
  • John Titor, a self-proclaimed time traveler, alleged that CERN would invent time travel in 2001.
  • CERN is depicted in the visual novel/anime series Steins;Gate as SERN, a shadowy organization that has been researching time travel in order to restructure and control the world.
  • In Robert J. Sawyer's 1999 science fiction novel Flashforward, as CERN's Large Hadron Collider accelerator is performing a run to search for the Higgs boson the entire human race sees themselves twenty-one years and six months in the future.
  • A number of conspiracy theories feature CERN, accusing the organization of partaking in occult rituals and secret experiments involving opening portals into Hell or other dimensions, shifting the world into an alternative timeline and causing earthquakes.[183][184]
  • In Dan Brown's 2000 mystery-thriller novel Angels & Demons and 2009 film of the same name, a canister of antimatter is stolen from CERN.[185]
  • CERN is depicted in a 2009 episode of South Park (Season 13, Episode 6), "Pinewood Derby". Randy Marsh, the father of one of the main characters, breaks into the "Hadron Particle Super Collider in Switzerland" and steals a "superconducting bending magnet created for use in tests with particle acceleration" to use in his son Stan's Pinewood Derby racer.[186]
  • In the 2010 season 3 episode 15 of the TV situation comedy The Big Bang Theory, "The Large Hadron Collision", Leonard and Raj travel to CERN to attend a conference and see the LHC.
  • The 2012 student film Decay, which centers on the idea of the Large Hadron Collider transforming people into zombies, was filmed on location in CERN's maintenance tunnels.[187]
  • The Compact Muon Solenoid at CERN was used as the basis for the Megadeth's Super Collider album cover.
  • CERN forms part of the back story of the massively multiplayer augmented reality game Ingress,[188] and in the 2018 Japanese anime television series Ingress: The Animation, based on Niantic's augmented reality mobile game of the same name.
  • In 2015, Sarah Charley, US communications manager for LHC experiments at CERN with graduate students Jesse Heilman of the University of California, Riverside, and Tom Perry and Laser Seymour Kaplan of the University of Wisconsin, Madison created a parody video based on "Collide", a song by American artist Howie Day.[189] The lyrics were changed to be from the perspective of a proton in the Large Hadron Collider. After seeing the parody, Day re-recorded the song with the new lyrics, and released a new version of "Collide" in February 2017 with a video created during his visit to CERN.[190]
  • In 2015, Ryoji Ikeda created an art installation called "Supersymmetry" based on his experience as a resident artist at CERN.[191]
  • The television series Mr. Robot features a secretive, underground project apparatus that resembles the ATLAS experiment.
  • Parallels, a Disney+ television series released in March 2022, includes a particle-physics laboratory at the French-Swiss border called "ERN". Various accelerators and facilities at CERN are referenced during the show, including ATLAS, CMS, the Antiproton Decelerator, and the FCC.[192][193][194]

See also

Шаблон:Div col

Шаблон:Div col end

References

Шаблон:Reflist

External links

Шаблон:Commons

Archival collections

Шаблон:CERN Шаблон:Research institutes in Switzerland Шаблон:Prince of Asturias Award for Technical and Scientific Research Шаблон:Authority control

  1. Шаблон:Cite journal
  2. Шаблон:Cite web
  3. Шаблон:Cite web
  4. Шаблон:Cite web
  5. Шаблон:Cite journal
  6. Шаблон:Cite book
  7. Шаблон:Cite web
  8. Шаблон:Cite book
  9. Шаблон:Cite book
  10. Шаблон:Cite web
  11. 11,0 11,1 Шаблон:Cite web
  12. Шаблон:Cite book
  13. Шаблон:Cite book
  14. Шаблон:Cite web
  15. Шаблон:Cite book
  16. Шаблон:Cite web
  17. Шаблон:Cite journal
  18. Шаблон:Cite book
  19. 19,0 19,1 Шаблон:Cite book
  20. Шаблон:Citation
  21. Шаблон:Cite book
  22. Шаблон:Cite journal
  23. Шаблон:Cite journal
  24. Шаблон:Cite news
  25. Шаблон:Cite journal
  26. Шаблон:Cite web
  27. Шаблон:Cite journal
  28. Шаблон:Cite news
  29. Шаблон:Cite journal
  30. Шаблон:Cite web
  31. Шаблон:Cite book
  32. Шаблон:Cite journal
  33. Шаблон:Cite journal
  34. Adrian Cho, "Neutrinos Travel Faster Than Light, According to One Experiment", Science NOW, 22 September 2011.
  35. Шаблон:Cite web
  36. Шаблон:Cite journal
  37. Шаблон:Cite journal
  38. Шаблон:Cite book
  39. Шаблон:Cite book
  40. Шаблон:Cite book
  41. Шаблон:Cite web
  42. Шаблон:Cite web
  43. Шаблон:Cite web
  44. Шаблон:Cite web
  45. Шаблон:Cite web
  46. Шаблон:Cite web
  47. Шаблон:Cite web
  48. Шаблон:Cite web
  49. 49,0 49,1 Шаблон:Cite journal
  50. Шаблон:Cite book
  51. Шаблон:Cite web
  52. Шаблон:Cite journal
  53. Шаблон:Citation
  54. Шаблон:Cite book
  55. Шаблон:Cite book
  56. Шаблон:Cite book
  57. Шаблон:Cite journal
  58. Шаблон:Cite book
  59. Шаблон:Cite journal
  60. Шаблон:Cite journal
  61. Шаблон:Cite journal
  62. Шаблон:Cite journal
  63. Шаблон:Cite journal
  64. Шаблон:Cite book
  65. Шаблон:Cite journal
  66. Шаблон:Cite book
  67. Шаблон:Cite journal
  68. Шаблон:Cite web
  69. Шаблон:Cite journal
  70. Шаблон:Cite journal
  71. Шаблон:Cite journal
  72. Шаблон:Cite arXiv
  73. Шаблон:Cite news
  74. Шаблон:Cite web
  75. Шаблон:Cite journal
  76. Шаблон:Cite web
  77. Шаблон:Cite web
  78. Шаблон:Cite web
  79. Шаблон:Cite web
  80. Шаблон:Cite web
  81. Шаблон:Cite web
  82. Шаблон:Cite journal
  83. Шаблон:Cite journal
  84. Шаблон:Cite book
  85. Шаблон:Cite web
  86. Шаблон:Cite journal
  87. Шаблон:Cite web
  88. Шаблон:Cite journal
  89. Шаблон:Citation
  90. Шаблон:Citation
  91. Шаблон:Cite book
  92. Шаблон:Cite journal
  93. Шаблон:Cite conference
  94. Шаблон:Cite book
  95. 95,0 95,1 Шаблон:Cite journal
  96. Шаблон:Cite book
  97. 97,0 97,1 Шаблон:Cite journal
  98. Шаблон:Cite journal
  99. Шаблон:Cite journal
  100. Шаблон:Cite news
  101. 101,0 101,1 Шаблон:Cite web
  102. Rahman, Fazlur. (11 November 2013) Israel may become first non-European member of nuclear research group CERN – Diplomacy and Defense Israel News. Haaretz. Retrieved 28 April 2014.
  103. 103,0 103,1 Шаблон:Cite web
  104. Шаблон:Cite web
  105. 105,0 105,1 Шаблон:Cite web
  106. Шаблон:Cite web
  107. Шаблон:Cite web
  108. Шаблон:Cite web
  109. 109,0 109,1 Шаблон:Cite web
  110. 110,0 110,1 Шаблон:Cite web
  111. 111,0 111,1 Шаблон:Cite web
  112. 112,0 112,1 Шаблон:Cite web
  113. Шаблон:Cite web
  114. Шаблон:Cite web
  115. Шаблон:Cite web
  116. 116,0 116,1 Шаблон:Cite web
  117. 117,0 117,1 Шаблон:Cite web
  118. 118,0 118,1 Шаблон:Cite web
  119. 119,0 119,1 Шаблон:Cite web
  120. 120,0 120,1 Шаблон:Cite news
  121. Шаблон:Cite web
  122. Шаблон:Cite web
  123. Шаблон:Cite web
  124. Шаблон:Cite web
  125. Шаблон:Cite web
  126. Шаблон:Cite web
  127. Шаблон:Cite web
  128. Шаблон:Cite news
  129. Шаблон:Cite web
  130. Шаблон:Cite web
  131. Шаблон:Cite web
  132. 132,0 132,1 132,2 Шаблон:Cite web
  133. Шаблон:Cite web
  134. Шаблон:Cite web
  135. Шаблон:Cite journal
  136. Шаблон:Cite web
  137. Шаблон:Cite web
  138. Шаблон:Cite web
  139. Шаблон:Cite book
  140. Шаблон:Cite book
  141. Шаблон:Cite web
  142. Шаблон:Cite web
  143. Шаблон:Cite web
  144. Шаблон:Cite web
  145. Шаблон:Cite web
  146. Шаблон:Cite web
  147. Шаблон:Cite web
  148. Шаблон:Cite web
  149. Шаблон:Cite journal
  150. Шаблон:Cite web
  151. Шаблон:Cite report
  152. Шаблон:Cite book
  153. Шаблон:Citation
  154. Шаблон:Citation
  155. Шаблон:Citation
  156. Шаблон:Citation
  157. Шаблон:Cite book
  158. Шаблон:Cite book
  159. Шаблон:Cite journal
  160. Шаблон:Cite journal
  161. Шаблон:Cite journal
  162. Шаблон:Cite journal
  163. Шаблон:Cite journal
  164. Шаблон:Cite journal
  165. Шаблон:Cite web
  166. Шаблон:Cite web
  167. Шаблон:Cite web
  168. Шаблон:Cite web
  169. Шаблон:Cite web
  170. Шаблон:Cite book
  171. Шаблон:Cite journal
  172. Шаблон:Cite web
  173. Шаблон:Cite web
  174. Шаблон:Cite book
  175. Шаблон:Cite journal
  176. Шаблон:Cite web
  177. Шаблон:Cite journal
  178. Шаблон:Citation
  179. Шаблон:Cite news
  180. Шаблон:Cite news
  181. Шаблон:Cite web
  182. Шаблон:Cite web
  183. Шаблон:Cite web
  184. Шаблон:Cite web
  185. Шаблон:Cite web
  186. Шаблон:Cite web
  187. Шаблон:Cite web
  188. Шаблон:Cite magazine
  189. Шаблон:Cite web
  190. Шаблон:Cite news
  191. Шаблон:Cite news
  192. Шаблон:Cite web
  193. Шаблон:Cite web
  194. Шаблон:Cite web