Английская Википедия:CM chondrite

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description CM chondrites are a group of chondritic meteorites which resemble their type specimen, the Mighei meteorite. The CM is the most commonly recovered group of the 'carbonaceous chondrite' class of meteorites, though all are rarer in collections than ordinary chondrites.

Overview and Taxonomy

Meteorites mostly divide into Ordinary and 'Carbonaceous' chondrite classes; far fewer belong to lesser classes like Enstatites and Ureilites. The term 'chondrite' indicates that these contain (or may have contained) chondrules in a matrix. Chondrules are cooled droplets of minerals, predating the meteorites themselves. The term 'carbonaceous' was assigned relative to the ordinary chondrites; some Enstatite and Ureilite meteorites may have more carbon than C-chondrites.[1] Still, all C-chondrites are distinguished from ordinary chondrites by a non-trace carbon content (resulting in a dark color), plus other volatiles, giving a lower density.[2][3] After the classes were devised, a more rigorous definition was found: C-chondrites contain proportionally higher magnesium than ordinary chondrites.[4][5][6]

The C-chondrites subdivide into CI, CM, CO, CV, CK, CR, and lesser groups (CH, CB, and ungrouped C-meteorites). Specimens are formed into groups by their petrological and chemical qualities, and the group named for a salient example. These include the CI (Ivuna-like), CM (Mighei-like), CO (Ornans-like), etc. The CM group most resembles the CI and CO chondrites; a CM-CO is sometimes described.[7][8][9] All three groups contain clearly anomalous 50Ti and 54Cr isotopes.[10][11]

Though the C-chondrites are far rarer than ordinary chondrites, the CM group is "the most abundant type of" them.[12][13] The latest Catalogue of Meteorites (5th edition, 2000) gives 15 CM falls (observed entries, then recoveries), and 146 finds (meteorites with entries unobserved, possibly ancient). By contrast, the next highest are the COs- 5 falls, 80 finds listed. These are in a class of 36 C-chondrite falls, 435 finds. If the CMs and COs are taken to be a clan, its dominance is even higher.[14]

Petrologic types

C-chondrites in general, and CM chondrites among them, have low densities for meteorites. CMs are slightly more dense (~2.1 gram/cc) than the CIs, but less dense than CO and other C-chondrites.[15][16] This is due to a combination of brecciation (rock lithified from fragments of prior rocks)[17] including porosities[2] and inherently light constituent materials (see chemistry, below). (Rare unbrecciated CMs include Y-791198 and ALH81002.[18])

Based primarily on petrology, early scientists attempted to quantify different meteorites. Rose ("kohlige meteorite"),[19] then Tschermak devised early taxonomies.[20] In the 1904 scheme of Brezina, today's CM chondrites would be "K" ("coaly chondrites").[21] Wiik published the first recognizably modern system in 1956, dividing meteorites into Type I, II, and III. CMs fell within Wiik's Type II.[22]

The CM chondrites are essentially all Type 2 in the petrographic scale of Van Schmus and Wood 1967; by that time, CI and CM recoveries were enough to define the 'left' (aqueous alteration) end of the scale. (CI chondrites, the Van Schmus Wood Type 1, is equivalent to Wiik's Type I, etc.) The types 4 through 6 indicate increasing thermal alteration; Type 3 is assumed to be unaltered.[23]

Type 1 2 3 4 5 6 7
Homogeneity of olivine and pyroxene compositions - >5% mean deviations ≤5% Homogeneous
Structural state of low-Ca pyroxene - Predominantly monoclinic >20% monoclinic ≤20% monoclinic Orthorhombic
Degree of development of secondary feldspar - Minor primary grains Secondary <2-um grains Secondary 2-50-um grains Secondary >50-um grains
Chondrule glass Altered or absent Mostly altered, some preserved Clear, isotropic Devitrified Absent
Metal: Maximum Ni content - <20% Taenite minor or absent >20% kamacite and taenite in exsolution relationship
Sulfides: Mean Ni content - >0.5% <0.5%
Overall Texture No chondrules Sharp chondrule boundaries Some chondrules can be discerned, fewer sharp edges Chondrules poorly delineated Primary textures destroyed
Matrix Fine-grained, opaque Mostly fine-grained opaque Opaque to transparent Transparent, recrystallized
Bulk carbon content ~2.8% ~0.6–2.8% ~0.2–1.0% <0.2%
Bulk water content ~20% ~4-18% 0.3-3% <1.5%

Van Schmus, Wood 1967; Sears, Dodd 1988; Brearley, Jones 1998; Weisberg 2006[8]

The modern groups 'V' and 'O' were named by Van Schmus in 1969 as divisions of Type 3, as 'subclass C3V' and 'C3OШаблон:Not a typo'.[24] Wasson then added C2M in 1974; since then, C2Ms have generally been shortened to simply 'CM', as have the other groups.[25]

Petrologic types by group
Group 1 2 3 4 5 6 7
CI
CM
CR
CH
CB
CV
CO
CK

After Weisberg et al. 2006,[8] Giese et al. 2019[26] Note: lone CV2 specimen, Mundrabilla 012[27][28]

Chondrules and similar

As Type 2 meteorites, CM chondrites have some remaining chondrules; others have been modified or dissolved by water. COs have more chondrules; CIs have either trace outlines of former chondrules ("pseudomorphs") or, some have argued, never contained any chondrules at all. Many CM chondrules are surrounded by either rims of accessory minerals, or haloes of water-altered chondrule material.[29][30]

The chondrules of CM chondrites, though fewer, are larger than in COs. While CM chondrules are smaller than average in diameter (~300 micrometer), CO chondrules are exceptionally small (~170 um).[31][32] This may be a survivor bias: consider that the water which dissolves CM chondrules successfully eliminates those which are already small, while those which were large may remain to be observed, though with less of the original material.[33] Similarly, CMs contain minor CAIs (calcium-aluminium rich inclusions).[34][35]

Matrix

The matrix of CMs (ground material, between chondrules) has been described as "sponge"[36] or "spongy."[24]

Grains of olivine and pyroxene silicates, too, are fewer in CM meteorites than COs, but more than CIs. As with chondrules, these are water-susceptible, and follow the water progression of the petrographic scale. So, too, do grains of free metal. CO meteorites contain higher levels of free metal domains, where CIs have mostly oxidized theirs; CMs are in between.[36][37]

Both free metal, and grains of olivine/pyroxene, have been largely or predominantly altered to matrix materials.[38] A CM meteorite will consist of more matrix than a CO, but less than a CI (which are essentially all matrix, per Van Schmus & Wood 1967).[39]

In 1860, Wohler presciently or coincidentally identified matrix as serpentinite.[40] Fuchs et al. 1973, unable to identify the constituent phyllosilicates, gave matrix as "poorly characterized phase" (PCP).[41] Cronstedtite was published by Kurat and Kracher in 1975.[42]

Tomeoka and Buseck, identifying cronstedtite and tochilinite in 1985, gave matrix material as “FESON” (Fe-Ni-S-O layers), as well as the backronym “partly characterized phase” for “PCP.”[43] Later authors would use the term TCI, tochilinite-cronstedtite intergrowths. Less common phyllosilicates include chlorite, vermiculite, and saponite.[44][45]

Sub-Classification

The CM group is both numerous and diverse. Multiple attempts have been made to subdivide the group beyond the Van Schmus-Wood typing. McSween 1979 was an early proposal.[46] After him, these add a suffix after the petrologic type, with 'CM2.9' referring to less-altered, CO-like specimens, and 'CM2.0' being more-altered, CI-like meteorites. (As of recently, no true 2.9 specimens have been catalogued.)

McSween 1979 graded the amount of matrix versus total amount, and the depletion of iron in the matrix, to quantify higher degrees of alteration.[46]

Browning et al. 1996 devised a formula ("MAI," Mineralogical Alteration Index), quantified the amount of unaltered silicate grains, and graded the alteration level of chondrules to quantify alteration.[47]

Rubin et al. 2007 added measurement of carbonates, with more dolomite and less calcite indicating higher alteration.[48]

Howard et al. 2009, 2011 measured total abundance of phyllosilicates to quantify alteration.[49][13]

Alexander et al. 2012, 2013 measured deuterium level, C/H, and nitrogen isotopes to quantify alteration.[50][51]

This line of inquiry continues, as the systems have some disagreement on specimens. Murchison is consistently ranked as low-alteration, but authors differ on some more-altered meteorites.

Transitional examples

CM-CO

  • Paris- described as "the least altered CM chondrite so far"[52] "that bridges the gap between CMs and COs"[53]
  • ALHA77307
  • Adelaide
  • Acfer 094
  • MAC87300, MAC88107

CM-CI

Water

The CI and CM chondrites are the "water rich" meteorites,[54][55][56] CMs having 3-14 wt% water.[57] Water is contained in tochilinite,[58][59] cronstedtite,[60] and others.[61][62][59]

This water, not comets,[63][64] was the likely origin of Earth's oceans via isotope tracing (primarily deuterium, but also others).[65][56]

Fluid inclusions

Fluid inclusions containing meteorite water have long been reported;[66][67][68] however, these claims were doubted due to, e. g., contamination by cutting fluids during sectioning.[69][70] More modern claims have taken steps such as waterless preparation.[71][72][73]

Chemistry

Carbonaceous chondrites, as the name suggests, contain appreciable carbon compounds.[74] These include native carbon, simple compounds like metal carbides and carbonates, organic chains, and polycyclic aromatic hydrocarbons (PAHs).[75][76]

The elemental abundances of some C-chondrite groups (with the obvious exception of hydrogen, helium, and some other elements, see below)[77][78] have long been known to resemble solar abundance values.[79][80][81] The CI chondrites, in particular, correspond "quite closely, more so than does any other type of meteoric or terrestrial matter";[82] called "somewhat miraculous".[8] Of course, only gas giant planets have the mass to retain, explicitly, hydrogen and helium. This extends to most noble gases, and to lesser amounts the elements N, O and C, the atmophiles. Other elements- volatiles and refractories- have correspondences between CI chondrites and the solar photosphere and solar wind such that the CI group is used as a cosmochemical standard.[83][84] As the Sun is 99% of the mass of the Solar System, knowing the solar abundance is the starting point for any other part or process of this System.[85]

The solar correspondence is similar but weaker in CM chondrites. More-volatile elements have been somewhat depleted relative to the CIs, and more-refractory elements somewhat enriched.[7][83][84]

A small amount[86] of meteorite materials are small presolar grains (PSGs).[87][88] These are crystals of material which survives from interstellar space, since before the formation of the Solar System. PSGs include silicon carbide ("Moissanite")[89] and micro-diamonds,[90] as well as other refractory minerals such as corundum and zircon.[91] The isotope levels of their elements do not match solar system levels, instead being closer to e. g., the interstellar medium. PSGs themselves may contain smaller PSGs.[92]

As with other meteorite classes, some carbon content is as carbides (often Cohenite, Fe3C with e.g., nickel substitutions)[93] and carbonates such as calcite and dolomite.[94][95][96] Aragonite appears, where CIs contain little or none.[97]

Total carbon compounds in CM chondrites are lower than in CI chondrites; however, more are aromatics.[98] Isotope profiling indicates these are meteoritic, not terrestrial.[99]

The organics of C-chondrites divide into soluble, and IOM (Insoluble Organic Matter). The soluble fraction would yield to the chemistry techniques of the mid-20th century,[100][101] giving paraffin, naphthene and aromatics, with other contributions.[102]

The IOM is, however, the clear majority of the organic component; in 1963, Briggs and Mamikunian could only give it as "very high molecular weight". IOM itself divides into two components: thermally labile, and refractory.[103]

Amino acids

Amino acids and other organics were first reported by multiple groups;[104][105] however, concentrations were low to undetectable,[106][107] and claimed to be terrestrial contamination.[108][109] The 1969 fall of the Murchison meteorite provided over 100 kg of sample, the largest CM ever. Specimens were recovered quickly, from a dry area. Combined with progress in, e.g., biochemistry and petrochemistry techniques, the question could be addressed more definitively: sugars[110] and amino acids[111][112] existed in space, via meteorites. This includes non-terrestrial amino acids.[113][114] Multiple isotopes do not match Earth levels, strong evidence for non-contamination.[115][116][117]

The levels of amino acids are higher in CMs than CIs.[118]

Amino-like nitriles/cyanides[119] and heterocycles[120] are also found. These related organics may be decomposition products or precursors.[121][122][123]

Chirality

The early analyses did not record optical rotation, and gave meteoritic organics as racemic.[124][102] As amino acids are diverse but low, the discovery of meteoritic chirality had to await the separation of IOM.[125] Handedness of some meteorite organics is now accepted (see below),[116] including in the soluble organic fraction.[126][127]

Meteoritic Amino Acids
Amino Acid Ref
Glycine 1
Alanine 1
Serine 5
Isoserine 4
Homoserine 4
β-Homoserine 4
d-2,3-diaminopropanoic acid 2
α-Methylserine 4
Threonine 5
Isothreonine 4
allo-Isothreonine 4
Asparagine 5
2,3-Diaminobutanoic acid 2
Glutamic acid 1
Valine 1
Isovaline 3
Norvaline 3
Proline 1
Leucine 5
Isoleucine 5
Norleucine 3
2-methylalanine 1
Isobutylamine 6
Histamine 5
Isovaline 6
Sarcosine 1

1. Kvenvolden et al. 1970;[113] 2. Meierheinrich[128] et al. 2004 3. Martins et al. 2015[129] 4. Koga et al. 2017;[114] 5. Rudraswami et al. 2018;[130] 6. Pizzarello, Yarnes 2018[127]

Gas

The first publication of anomalous gas in a carbonaceous chondrite (Murray) was in 1960.[131] "Gas-rich meteorites" of other classes host their gas in dark liths,[132] in most cases closely related to CM.[133]

Gases in meteorites include primordial, solar (both solar wind, and a distinct solar flare component), radiogenic (due to cosmic-ray exposure), and fissile (decay products).[134] Host materials are generally carbonaceous,[135] including presolar grains: diamond,[136] silicon carbide,[137][138] graphite,[139] and organics.

Nogoya is one particularly gas-rich CM chondrite.[132][140]

Micrometeorites lose significant amounts of their gas to entry heating,[141] but still deliver quantifiable amounts.[142]

Isotopic analyses

Isotope studies have become vital in examining natural histories.[143] Oxygen, in particular, forms quite stable oxides; it requires significant events, processes, or energies to segregate isotopes by their slight mass differences.

CM and CI chondrites have a measurable difference in oxygen isotope levels. This suggests a different formation temperature, and hence a different zone of the young Solar System. However, CM and CO meteorites were found to have similar oxygen isotopes, indicating a relationship.[7][144][145]

Hydrogen

Carbon

Nitrogen

Provenance

CMs, like other C-chondrites, are subjected to a serious observation bias. C-chondrites are friable, due to both macro-scale porosity and micro-scale matrices of phyllosilicates, with many chondrules also having layers such as phyllosilicates.[146] The meteorites have been described as "tuff" (compacted volcanic ash).[147][29]

As one example, the Tagish Lake meteorite provided ~10 kg of samples, from a meteor estimated to be 60-90 tons before entry.[148]

By contrast, many ordinary chondrite meteorites are tougher[149] and overrepresented.[150] Iron meteorites are even moreso.[151]

CI and CM chondrites in particular are then subject to weathering on the ground. As large fractions of C-chondrite material are water soluble, ordinary chondrites and irons are more likely to be recognized and recovered. Greater coverage of hot deserts and Antarctica has resulted in many C-chondrite specimens.[152][153][154]

Parent body(s)

Шаблон:Main

As carbonaceous specimens, CM and other groups are widely assumed to be from carbonaceous asteroids. This includes the explicit C-type asteroids, and to various degrees the related G-, B- (including the deprecated F-), D-, and P-types.[155][156][157] As carbonaceous types are the majority of asteroids,[158][159][160] but only a few percent of recovered meteorites,[14] selection/filtering effects must be severe.

Aside from the diversity of CMs, and the diversity of C-asteroid types and subtypes (besides the asteroids themselves), the question of parentage is very open as of this writing. The Almahata Sitta meteorite was catalogued as a ureilite, an entirely different meteorite class. However, it entered as asteroid 2008 TC3. A crude spectrum was taken before entry, which would have placed 2008 TC3 as a F- or B-type.[161]

Some amount of space weathering is seen to occur on carbonaceous asteroids; this complicates attempts to link parents via spectroscopy.[162][163][164]

A hypothesis persists that all CMs stem from a single parent.[7][165][166]

An alternate hypothesis[167][168]

Polymict meteorites

Brecciated meteorites include monomict breccias (re-formed from rock fragments on a single type) and polymict ones (incorporating different source rocks). Polymict meteorites record exchanges between sites. C-chondrite materials are often found in such meteorites.[169][170]

  • PRA 04401- nominally a HED, contains as much CM or CM-like material in clasts as HED material[171]
  • Kaidun- a "kitchen sink"[172] breccia
  • Supuhee
  • Plainview
  • Jodzie

Micrometeorites/Interplanetary Dust Particles (IDPs)

Open issues

List of CM chondrites

Notable specimens

Recently recovered CM chondrites

Шаблон:Expand list

See also

General References

  • Mason, B. The Carbonaceous Chondrites. 1962 Space Sciences Reviews vol. 1, p. 621
  • Meteorites and the Early Solar System, Kerridge, J. Matthews, M. eds. 1988 University of Arizona Press, Tucson Шаблон:ISBN
  • Planetary Materials, Papike, J., ed. 1999 Mineralogical Society of America, Washington DC Шаблон:ISBN
  • The Catalogue of Meteorites, Grady, M. ed. 2000 Cambridge University Press, Cambridge Шаблон:ISBN
  • Meteorites and the Early Solar System II, Lauretta, D. McSween, H. eds. 2006 University of Arizona Press, Tucson Шаблон:ISBN

References

Шаблон:Reflist

Шаблон:Meteorites

  1. Шаблон:Cite book Ch. Chondrites and their Components
  2. 2,0 2,1 Шаблон:Cite journal
  3. Шаблон:Cite journal
  4. Шаблон:Cite journal
  5. Шаблон:Cite journal
  6. Шаблон:Cite journal
  7. 7,0 7,1 7,2 7,3 Шаблон:Cite journal
  8. 8,0 8,1 8,2 8,3 Шаблон:Cite book
  9. Шаблон:Cite web
  10. Шаблон:Cite journal
  11. Шаблон:Cite journal
  12. Шаблон:Cite journal
  13. 13,0 13,1 Шаблон:Cite journal
  14. 14,0 14,1 Шаблон:Cite book
  15. Шаблон:Cite journal
  16. Шаблон:Cite journal
  17. Шаблон:Cite conference
  18. Шаблон:Cite conference
  19. Шаблон:Cite book
  20. Шаблон:Cite journal
  21. Шаблон:Cite journal
  22. Шаблон:Cite journal
  23. Шаблон:Cite journal
  24. 24,0 24,1 Шаблон:Cite book
  25. Шаблон:Cite book
  26. Шаблон:Cite journal
  27. Шаблон:Cite web
  28. Шаблон:Cite web
  29. 29,0 29,1 Шаблон:Cite conference
  30. Шаблон:Cite book
  31. Шаблон:Cite journal
  32. Шаблон:Cite journal
  33. Шаблон:Cite journal
  34. Шаблон:Cite journal
  35. Шаблон:Cite journal
  36. 36,0 36,1 Шаблон:Cite journal
  37. Шаблон:Cite journal
  38. Шаблон:Cite journal
  39. Шаблон:Cite journal
  40. Шаблон:Cite journal
  41. Шаблон:Cite journal
  42. Шаблон:Cite journal
  43. Шаблон:Cite journal
  44. Шаблон:Cite journal
  45. Шаблон:Cite book
  46. 46,0 46,1 Шаблон:Cite journal
  47. Шаблон:Cite journal
  48. Шаблон:Cite journal
  49. Шаблон:Cite journal
  50. Шаблон:Cite conference
  51. Шаблон:Cite journal
  52. Шаблон:Cite journal
  53. Шаблон:Cite journal
  54. Шаблон:Cite journal
  55. Шаблон:Cite journal
  56. 56,0 56,1 Шаблон:Cite journal
  57. Шаблон:Cite journal
  58. Шаблон:Cite conference
  59. 59,0 59,1 Шаблон:Cite conference
  60. Шаблон:Cite journal
  61. Шаблон:Cite journal
  62. Шаблон:Cite journal
  63. Шаблон:Cite journal
  64. Шаблон:Cite journal
  65. Шаблон:Cite journal
  66. Шаблон:Cite book
  67. Шаблон:Cite journal
  68. Шаблон:Cite journal
  69. Шаблон:Cite journal
  70. Шаблон:Cite journal
  71. Шаблон:Cite journal
  72. Шаблон:Cite journal
  73. Шаблон:Cite journal
  74. Шаблон:Cite journal
  75. Шаблон:Cite journal
  76. Шаблон:Cite journal
  77. Шаблон:Cite journal
  78. Шаблон:Cite journal
  79. Шаблон:Cite journal
  80. Шаблон:Cite journal
  81. Шаблон:Cite journal
  82. Шаблон:Cite journal
  83. 83,0 83,1 Шаблон:Cite book
  84. 84,0 84,1 Шаблон:Cite book
  85. Шаблон:Cite journal Special Issue: The Genesis Discovery Mission
  86. Шаблон:Cite conference
  87. Шаблон:Cite journal
  88. Шаблон:Cite journal
  89. Шаблон:Cite journal
  90. Шаблон:Cite journal
  91. Шаблон:Cite journal
  92. Шаблон:Cite journal
  93. Шаблон:Cite journal
  94. Шаблон:Cite journal
  95. Шаблон:Cite conference
  96. Шаблон:Cite journal
  97. Шаблон:Cite journal
  98. Шаблон:Cite journal
  99. Шаблон:Cite journal
  100. Шаблон:Cite journal
  101. Шаблон:Cite journal
  102. 102,0 102,1 Шаблон:Cite journal
  103. Шаблон:Cite journal
  104. Шаблон:Cite journal
  105. Шаблон:Cite journal
  106. Шаблон:Cite book
  107. Шаблон:Cite journal
  108. Шаблон:Cite journal
  109. Шаблон:Cite journal
  110. Шаблон:Cite journal
  111. Шаблон:Cite journal
  112. Шаблон:Cite journal
  113. 113,0 113,1 Шаблон:Cite journal
  114. 114,0 114,1 Шаблон:Cite journal
  115. Шаблон:Cite book
  116. 116,0 116,1 Шаблон:Cite journal
  117. Шаблон:Cite journal
  118. Шаблон:Cite journal
  119. Шаблон:Cite journal
  120. Шаблон:Cite journal
  121. Шаблон:Cite book
  122. Шаблон:Cite journal
  123. Шаблон:Cite journal
  124. Шаблон:Cite journal
  125. Шаблон:Cite journal
  126. Шаблон:Cite journal
  127. 127,0 127,1 Шаблон:Cite journal
  128. Шаблон:Cite journal
  129. Шаблон:Cite journal
  130. Шаблон:Cite journal
  131. Шаблон:Cite journal
  132. 132,0 132,1 Шаблон:Cite journal
  133. Шаблон:Cite book
  134. Шаблон:Cite journal
  135. Шаблон:Cite journal
  136. Шаблон:Cite journal
  137. Шаблон:Cite journal
  138. Шаблон:Cite journal
  139. Шаблон:Cite journal
  140. Шаблон:Cite journal
  141. Шаблон:Cite journal
  142. Шаблон:Cite conference
  143. Шаблон:Cite journal
  144. Шаблон:Cite journal
  145. Шаблон:Cite conference
  146. Шаблон:Cite journal
  147. Шаблон:Cite journal
  148. Шаблон:Cite journal
  149. Шаблон:Cite journal
  150. Шаблон:Cite journal
  151. Шаблон:Cite book sec. The frequency of meteorite types
  152. Шаблон:Cite journal
  153. Шаблон:Cite book Ch. Weathering of Chondritic Meteorites, Bland, P., Zolensky, M., Benedix, G., Sephton, M.
  154. Шаблон:Cite web
  155. Шаблон:Cite book Chapter: Meteorite parent bodies, Britt, D., Lebofsky, L.
  156. Шаблон:Cite journal
  157. Шаблон:Cite journal
  158. Шаблон:Cite web
  159. Шаблон:Cite book "it is likely that the C-type asteroids (which are overwhelmingly the most abundant type in the main belt, especially the middle and outer parts) are represented in various meteorite collections by carbonaceous chondrites"
  160. Шаблон:Cite web
  161. Шаблон:Cite journal
  162. Шаблон:Cite journal
  163. Шаблон:Cite journal
  164. Шаблон:Cite journal
  165. Шаблон:Cite journal
  166. Шаблон:Cite conference
  167. Шаблон:Cite journal
  168. Шаблон:Cite book in International Workshop on Antarctic Meteorites, Annexstad J. et al., eds.
  169. Шаблон:Cite journal
  170. Шаблон:Cite journal
  171. Шаблон:Cite journal
  172. Шаблон:Cite web