Английская Википедия:CUDA

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description Шаблон:Multiple Шаблон:Infobox software CUDA (Compute Unified Device Architecture) is a proprietary and closed-source parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for general-purpose processing, an approach called general-purpose computing on GPUs (GPGPU). CUDA is a software layer that gives direct access to the GPU's virtual instruction set and parallel computational elements for the execution of compute kernels.[1]

CUDA is designed to work with programming languages such as C, C++, and Fortran. This accessibility makes it easier for specialists in parallel programming to use GPU resources, in contrast to prior APIs like Direct3D and OpenGL, which required advanced skills in graphics programming.[2] CUDA-powered GPUs also support programming frameworks such as OpenMP, OpenACC and OpenCL;[3][1] and HIP by compiling such code to CUDA.

CUDA was created by Nvidia.[4] When it was first introduced, the name was an acronym for Compute Unified Device Architecture,[5] but Nvidia later dropped the common use of the acronym.Шаблон:When

Background

Шаблон:More information

The graphics processing unit (GPU), as a specialized computer processor, addresses the demands of real-time high-resolution 3D graphics compute-intensive tasks. By 2012, GPUs had evolved into highly parallel multi-core systems allowing efficient manipulation of large blocks of data. This design is more effective than general-purpose central processing unit (CPUs) for algorithms in situations where processing large blocks of data is done in parallel, such as:

Ian Buck, while at Stanford in 2000, created an 8K gaming rig using 32 GeForce cards, then obtained a DARPA grant to perform general purpose parallel programming on GPUs. He then joined Nvidia, where since 2004 he has been overseeing CUDA development. In pushing for CUDA, Jensen Huang aimed for the Nvidia GPUs to become a general hardware for scientific computing. CUDA was released in 2006. Around 2015, the focus of CUDA changed to neural networks.[6]

Ontology

The following table offers a non-exact description for the ontology of CUDA framework.

The ontology of CUDA framework
memory (hardware) memory (code, or variable scoping) computation (hardware) computation (code syntax) computation (code semantics)
RAM non-CUDA variables host program one routine call
VRAM, GPU L2 cache global, const, texture device grid simultaneous call of the same subroutine on many processors
GPU L1 cache local, shared SM ("streaming multiprocessor") block individual subroutine call
warp = 32 threads SIMD instructions
GPU L0 cache, register thread (aka. "SP", "streaming processor", "cuda core", but these names are now deprecated) analogous to individual scalar ops within a vector op

Programming abilities

Файл:CUDA processing flow (En).PNG
Example of CUDA processing flow Шаблон:Ordered list

The CUDA platform is accessible to software developers through CUDA-accelerated libraries, compiler directives such as OpenACC, and extensions to industry-standard programming languages including C, C++ and Fortran. C/C++ programmers can use 'CUDA C/C++', compiled to PTX with nvcc, Nvidia's LLVM-based C/C++ compiler, or by clang itself.[7] Fortran programmers can use 'CUDA Fortran', compiled with the PGI CUDA Fortran compiler from The Portland Group.Шаблон:Update inline

In addition to libraries, compiler directives, CUDA C/C++ and CUDA Fortran, the CUDA platform supports other computational interfaces, including the Khronos Group's OpenCL,[8] Microsoft's DirectCompute, OpenGL Compute Shader and C++ AMP.[9] Third party wrappers are also available for Python, Perl, Fortran, Java, Ruby, Lua, Common Lisp, Haskell, R, MATLAB, IDL, Julia, and native support in Mathematica.

In the computer game industry, GPUs are used for graphics rendering, and for game physics calculations (physical effects such as debris, smoke, fire, fluids); examples include PhysX and Bullet. CUDA has also been used to accelerate non-graphical applications in computational biology, cryptography and other fields by an order of magnitude or more.[10][11][12][13][14]

CUDA provides both a low level API (CUDA Driver API, non single-source) and a higher level API (CUDA Runtime API, single-source). The initial CUDA SDK was made public on 15 February 2007, for Microsoft Windows and Linux. Mac OS X support was later added in version 2.0,[15] which supersedes the beta released February 14, 2008.[16] CUDA works with all Nvidia GPUs from the G8x series onwards, including GeForce, Quadro and the Tesla line. CUDA is compatible with most standard operating systems.

CUDA 8.0 comes with the following libraries (for compilation & runtime, in alphabetical order):

  • cuBLAS – CUDA Basic Linear Algebra Subroutines library
  • CUDART – CUDA Runtime library
  • cuFFT – CUDA Fast Fourier Transform library
  • cuRAND – CUDA Random Number Generation library
  • cuSOLVER – CUDA based collection of dense and sparse direct solvers
  • cuSPARSE – CUDA Sparse Matrix library
  • NPP – NVIDIA Performance Primitives library
  • nvGRAPH – NVIDIA Graph Analytics library
  • NVML – NVIDIA Management Library
  • NVRTC – NVIDIA Runtime Compilation library for CUDA C++

CUDA 8.0 comes with these other software components:

  • nView – NVIDIA nView Desktop Management Software
  • NVWMI – NVIDIA Enterprise Management Toolkit
  • GameWorks PhysX – is a multi-platform game physics engine

CUDA 9.0–9.2 comes with these other components:

  • CUTLASS 1.0 – custom linear algebra algorithms,
  • NVIDIA Video Decoder was deprecated in CUDA 9.2; it is now available in NVIDIA Video Codec SDK

CUDA 10 comes with these other components:

  • nvJPEG – Hybrid (CPU and GPU) JPEG processing

CUDA 11.0–11.8 comes with these other components:[17][18][19][20]

  • CUB is new one of more supported C++ libraries
  • MIG multi instance GPU support
  • nvJPEG2000 – JPEG 2000 encoder and decoder

Advantages

CUDA has several advantages over traditional general-purpose computation on GPUs (GPGPU) using graphics APIs:

  • Scattered readsШаблон:Sndcode can read from arbitrary addresses in memory.
  • Unified virtual memory (CUDA 4.0 and above)
  • Unified memory (CUDA 6.0 and above)
  • Shared memoryШаблон:SndCUDA exposes a fast shared memory region that can be shared among threads. This can be used as a user-managed cache, enabling higher bandwidth than is possible using texture lookups.[21]
  • Faster downloads and readbacks to and from the GPU
  • Full support for integer and bitwise operations, including integer texture lookups

Limitations

  • Whether for the host computer or the GPU device, all CUDA source code is now processed according to C++ syntax rules.[22] This was not always the case. Earlier versions of CUDA were based on C syntax rules.[23] As with the more general case of compiling C code with a C++ compiler, it is therefore possible that old C-style CUDA source code will either fail to compile or will not behave as originally intended.
  • Interoperability with rendering languages such as OpenGL is one-way, with OpenGL having access to registered CUDA memory but CUDA not having access to OpenGL memory.
  • Copying between host and device memory may incur a performance hit due to system bus bandwidth and latency (this can be partly alleviated with asynchronous memory transfers, handled by the GPU's DMA engine).
  • Threads should be running in groups of at least 32 for best performance, with total number of threads numbering in the thousands. Branches in the program code do not affect performance significantly, provided that each of 32 threads takes the same execution path; the SIMD execution model becomes a significant limitation for any inherently divergent task (e.g. traversing a space partitioning data structure during ray tracing).
  • No emulation or fallback functionality is available for modern revisions.
  • Valid C++ may sometimes be flagged and prevent compilation due to the way the compiler approaches optimization for target GPU device limitations.Шаблон:Citation needed
  • C++ run-time type information (RTTI) and C++-style exception handling are only supported in host code, not in device code.
  • In single-precision on first generation CUDA compute capability 1.x devices, denormal numbers are unsupported and are instead flushed to zero, and the precision of both the division and square root operations are slightly lower than IEEE 754-compliant single precision math. Devices that support compute capability 2.0 and above support denormal numbers, and the division and square root operations are IEEE 754 compliant by default. However, users can obtain the prior faster gaming-grade math of compute capability 1.x devices if desired by setting compiler flags to disable accurate divisions and accurate square roots, and enable flushing denormal numbers to zero.[24]
  • Unlike OpenCL, CUDA-enabled GPUs are only available from Nvidia.[25] Attempts to implement CUDA on other GPUs include:
    • Project Coriander: Converts CUDA C++11 source to OpenCL 1.2 C. A fork of CUDA-on-CL intended to run TensorFlow.[26][27][28]
    • CU2CL: Convert CUDA 3.2 C++ to OpenCL C.[29]
    • GPUOpen HIP: A thin abstraction layer on top of CUDA and ROCm intended for AMD and Nvidia GPUs. Has a conversion tool for importing CUDA C++ source. Supports CUDA 4.0 plus C++11 and float16.
    • ZLUDA is a drop-in replacement for CUDA on AMD GPUs and formerly Intel GPUs with near-native performance.[30] The developer, Andrzej Janik, was separately contracted by both Intel and AMD to develop the software in 2021 and 2022, respectively. However, neither company decided to release it officially due to the lack of a business use case. AMD's contract included a clause that allowed Janik to release his code for AMD independently, allowing him to release the new version that only supports AMD GPUs.[31]
    • chipStar can compile and run CUDA/HIP programs on advanced OpenCL 3.0 or Level Zero platforms.[32]

Example

This example code in C++ loads a texture from an image into an array on the GPU:

texture<float, 2, cudaReadModeElementType> tex;

void foo()
{
  cudaArray* cu_array;

  // Allocate array
  cudaChannelFormatDesc description = cudaCreateChannelDesc<float>();
  cudaMallocArray(&cu_array, &description, width, height);

  // Copy image data to array
  cudaMemcpyToArray(cu_array, image, width*height*sizeof(float), cudaMemcpyHostToDevice);

  // Set texture parameters (default)
  tex.addressMode[0] = cudaAddressModeClamp;
  tex.addressMode[1] = cudaAddressModeClamp;
  tex.filterMode = cudaFilterModePoint;
  tex.normalized = false; // do not normalize coordinates

  // Bind the array to the texture
  cudaBindTextureToArray(tex, cu_array);

  // Run kernel
  dim3 blockDim(16, 16, 1);
  dim3 gridDim((width + blockDim.x - 1)/ blockDim.x, (height + blockDim.y - 1) / blockDim.y, 1);
  kernel<<< gridDim, blockDim, 0 >>>(d_data, height, width);

  // Unbind the array from the texture
  cudaUnbindTexture(tex);
} //end foo()

__global__ void kernel(float* odata, int height, int width)
{
   unsigned int x = blockIdx.x*blockDim.x + threadIdx.x;
   unsigned int y = blockIdx.y*blockDim.y + threadIdx.y;
   if (x < width && y < height) {
      float c = tex2D(tex, x, y);
      odata[y*width+x] = c;
   }
}

Below is an example given in Python that computes the product of two arrays on the GPU. The unofficial Python language bindings can be obtained from PyCUDA.[33]

import pycuda.compiler as comp
import pycuda.driver as drv
import numpy
import pycuda.autoinit

mod = comp.SourceModule(
    """
__global__ void multiply_them(float *dest, float *a, float *b)
{
  const int i = threadIdx.x;
  dest[i] = a[i] * b[i];
}
"""
)

multiply_them = mod.get_function("multiply_them")

a = numpy.random.randn(400).astype(numpy.float32)
b = numpy.random.randn(400).astype(numpy.float32)

dest = numpy.zeros_like(a)
multiply_them(drv.Out(dest), drv.In(a), drv.In(b), block=(400, 1, 1))

print(dest - a * b)

Additional Python bindings to simplify matrix multiplication operations can be found in the program pycublas.[34]

 
import numpy
from pycublas import CUBLASMatrix

A = CUBLASMatrix(numpy.mat([[1, 2, 3], [4, 5, 6]], numpy.float32))
B = CUBLASMatrix(numpy.mat([[2, 3], [4, 5], [6, 7]], numpy.float32))
C = A * B
print(C.np_mat())

while CuPy directly replaces NumPy:[35]

import cupy

a = cupy.random.randn(400)
b = cupy.random.randn(400)

dest = cupy.zeros_like(a)

print(dest - a * b)

GPUs supported

Supported CUDA Compute Capability versions for CUDA SDK version and Microarchitecture (by code name):

Compute Capability (CUDA SDK support vs. Microarchitecture)
CUDA SDK
Version(s)
Tesla Fermi Kepler
(Early)
Kepler
(Late)
Maxwell Pascal Volta Turing Ampere Ada
Lovelace
Hopper Blackwell
1.0[36] Шаблон:Yes
1.1 Шаблон:Yes
2.0 Шаблон:Yes
2.1 – 2.3.1[37][38][39][40] Шаблон:Yes
3.0 – 3.1[41][42] Шаблон:Yes Шаблон:Yes
3.2[43] Шаблон:Yes Шаблон:Yes
4.0 – 4.2 Шаблон:Yes Шаблон:Yes
5.0 – 5.5 Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes
6.0 Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes
6.5 Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes
7.0 – 7.5 Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes
8.0 Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes
9.0 – 9.2 Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes
10.0 – 10.2 Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes
11.0[44] Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes
11.1 – 11.4[45] Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes
11.5 – 11.7.1[46] Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes
11.8[47] Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes
12.0 – 12.4 Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes

Note: CUDA SDK 10.2 is the last official release for macOS, as support will not be available for macOS in newer releases.

CUDA Compute Capability by version with associated GPU semiconductors and GPU card models (separated by their various application areas):

Compute Capability, GPU semiconductors and Nvidia GPU board products
Compute
capability
(version)
Micro-
architecture
GPUs GeForce Quadro, NVS Tesla/Datacenter Tegra,
Jetson,
DRIVE
1.0 Tesla G80 GeForce 8800 Ultra, GeForce 8800 GTX, GeForce 8800 GTS(G80) Quadro FX 5600, Quadro FX 4600, Quadro Plex 2100 S4 Tesla C870, Tesla D870, Tesla S870
1.1 G92, G94, G96, G98, G84, G86 GeForce GTS 250, GeForce 9800 GX2, GeForce 9800 GTX, GeForce 9800 GT, GeForce 8800 GTS(G92), GeForce 8800 GT, GeForce 9600 GT, GeForce 9500 GT, GeForce 9400 GT, GeForce 8600 GTS, GeForce 8600 GT, GeForce 8500 GT,
GeForce G110M, GeForce 9300M GS, GeForce 9200M GS, GeForce 9100M G, GeForce 8400M GT, GeForce G105M
Quadro FX 4700 X2, Quadro FX 3700, Quadro FX 1800, Quadro FX 1700, Quadro FX 580, Quadro FX 570, Quadro FX 470, Quadro FX 380, Quadro FX 370, Quadro FX 370 Low Profile, Quadro NVS 450, Quadro NVS 420, Quadro NVS 290, Quadro NVS 295, Quadro Plex 2100 D4,
Quadro FX 3800M, Quadro FX 3700M, Quadro FX 3600M, Quadro FX 2800M, Quadro FX 2700M, Quadro FX 1700M, Quadro FX 1600M, Quadro FX 770M, Quadro FX 570M, Quadro FX 370M, Quadro FX 360M, Quadro NVS 320M, Quadro NVS 160M, Quadro NVS 150M, Quadro NVS 140M, Quadro NVS 135M, Quadro NVS 130M, Quadro NVS 450, Quadro NVS 420,[48] Quadro NVS 295
1.2 GT218, GT216, GT215 GeForce GT 340*, GeForce GT 330*, GeForce GT 320*, GeForce 315*, GeForce 310*, GeForce GT 240, GeForce GT 220, GeForce 210,
GeForce GTS 360M, GeForce GTS 350M, GeForce GT 335M, GeForce GT 330M, GeForce GT 325M, GeForce GT 240M, GeForce G210M, GeForce 310M, GeForce 305M
Quadro FX 380 Low Profile, Quadro FX 1800M, Quadro FX 880M, Quadro FX 380M,
Nvidia NVS 300, NVS 5100M, NVS 3100M, NVS 2100M, ION
1.3 GT200, GT200b GeForce GTX 295, GTX 285, GTX 280, GeForce GTX 275, GeForce GTX 260 Quadro FX 5800, Quadro FX 4800, Quadro FX 4800 for Mac, Quadro FX 3800, Quadro CX, Quadro Plex 2200 D2 Tesla C1060, Tesla S1070, Tesla M1060
2.0 Fermi GF100, GF110 GeForce GTX 590, GeForce GTX 580, GeForce GTX 570, GeForce GTX 480, GeForce GTX 470, GeForce GTX 465,
GeForce GTX 480M
Quadro 6000, Quadro 5000, Quadro 4000, Quadro 4000 for Mac, Quadro Plex 7000,
Quadro 5010M, Quadro 5000M
Tesla C2075, Tesla C2050/C2070, Tesla M2050/M2070/M2075/M2090
2.1 GF104, GF106 GF108, GF114, GF116, GF117, GF119 GeForce GTX 560 Ti, GeForce GTX 550 Ti, GeForce GTX 460, GeForce GTS 450, GeForce GTS 450*, GeForce GT 640 (GDDR3), GeForce GT 630, GeForce GT 620, GeForce GT 610, GeForce GT 520, GeForce GT 440, GeForce GT 440*, GeForce GT 430, GeForce GT 430*, GeForce GT 420*,
GeForce GTX 675M, GeForce GTX 670M, GeForce GT 635M, GeForce GT 630M, GeForce GT 625M, GeForce GT 720M, GeForce GT 620M, GeForce 710M, GeForce 610M, GeForce 820M, GeForce GTX 580M, GeForce GTX 570M, GeForce GTX 560M, GeForce GT 555M, GeForce GT 550M, GeForce GT 540M, GeForce GT 525M, GeForce GT 520MX, GeForce GT 520M, GeForce GTX 485M, GeForce GTX 470M, GeForce GTX 460M, GeForce GT 445M, GeForce GT 435M, GeForce GT 420M, GeForce GT 415M, GeForce 710M, GeForce 410M
Quadro 2000, Quadro 2000D, Quadro 600,
Quadro 4000M, Quadro 3000M, Quadro 2000M, Quadro 1000M,
NVS 310, NVS 315, NVS 5400M, NVS 5200M, NVS 4200M
3.0 Kepler GK104, GK106, GK107 GeForce GTX 770, GeForce GTX 760, GeForce GT 740, GeForce GTX 690, GeForce GTX 680, GeForce GTX 670, GeForce GTX 660 Ti, GeForce GTX 660, GeForce GTX 650 Ti BOOST, GeForce GTX 650 Ti, GeForce GTX 650,
GeForce GTX 880M, GeForce GTX 870M, GeForce GTX 780M, GeForce GTX 770M, GeForce GTX 765M, GeForce GTX 760M, GeForce GTX 680MX, GeForce GTX 680M, GeForce GTX 675MX, GeForce GTX 670MX, GeForce GTX 660M, GeForce GT 750M, GeForce GT 650M, GeForce GT 745M, GeForce GT 645M, GeForce GT 740M, GeForce GT 730M, GeForce GT 640M, GeForce GT 640M LE, GeForce GT 735M, GeForce GT 730M
Quadro K5000, Quadro K4200, Quadro K4000, Quadro K2000, Quadro K2000D, Quadro K600, Quadro K420,
Quadro K500M, Quadro K510M, Quadro K610M, Quadro K1000M, Quadro K2000M, Quadro K1100M, Quadro K2100M, Quadro K3000M, Quadro K3100M, Quadro K4000M, Quadro K5000M, Quadro K4100M, Quadro K5100M,
NVS 510, Quadro 410
Tesla K10, GRID K340, GRID K520, GRID K2
3.2 GK20A Tegra K1,
Jetson TK1
3.5 GK110, GK208 GeForce GTX Titan Z, GeForce GTX Titan Black, GeForce GTX Titan, GeForce GTX 780 Ti, GeForce GTX 780, GeForce GT 640 (GDDR5), GeForce GT 630 v2, GeForce GT 730, GeForce GT 720, GeForce GT 710, GeForce GT 740M (64-bit, DDR3), GeForce GT 920M Quadro K6000, Quadro K5200 Tesla K40, Tesla K20x, Tesla K20
3.7 GK210 Tesla K80
5.0 Maxwell GM107, GM108 GeForce GTX 750 Ti, GeForce GTX 750, GeForce GTX 960M, GeForce GTX 950M, GeForce 940M, GeForce 930M, GeForce GTX 860M, GeForce GTX 850M, GeForce 845M, GeForce 840M, GeForce 830M Quadro K1200, Quadro K2200, Quadro K620, Quadro M2000M, Quadro M1000M, Quadro M600M, Quadro K620M, NVS 810 Tesla M10
5.2 GM200, GM204, GM206 GeForce GTX Titan X, GeForce GTX 980 Ti, GeForce GTX 980, GeForce GTX 970, GeForce GTX 960, GeForce GTX 950, GeForce GTX 750 SE,
GeForce GTX 980M, GeForce GTX 970M, GeForce GTX 965M
Quadro M6000 24GB, Quadro M6000, Quadro M5000, Quadro M4000, Quadro M2000, Quadro M5500,
Quadro M5000M, Quadro M4000M, Quadro M3000M
Tesla M4, Tesla M40, Tesla M6, Tesla M60
5.3 GM20B Tegra X1,
Jetson TX1,
Jetson Nano,
DRIVE CX,
DRIVE PX
6.0 Pascal GP100 Quadro GP100 Tesla P100
6.1 GP102, GP104, GP106, GP107, GP108 Nvidia TITAN Xp, Titan X,
GeForce GTX 1080 Ti, GTX 1080, GTX 1070 Ti, GTX 1070, GTX 1060,
GTX 1050 Ti, GTX 1050, GT 1030, GT 1010,
MX350, MX330, MX250, MX230, MX150, MX130, MX110
Quadro P6000, Quadro P5000, Quadro P4000, Quadro P2200, Quadro P2000, Quadro P1000, Quadro P400, Quadro P500, Quadro P520, Quadro P600,
Quadro P5000(Mobile), Quadro P4000(Mobile), Quadro P3000(Mobile)
Tesla P40, Tesla P6, Tesla P4
6.2 GP10B[49] Tegra X2, Jetson TX2, DRIVE PX 2
7.0 Volta GV100 NVIDIA TITAN V Quadro GV100 Tesla V100, Tesla V100S
7.2 GV10B[50]

GV11B[51][52]

Tegra Xavier,
Jetson Xavier NX,
Jetson AGX Xavier,
DRIVE AGX Xavier,
DRIVE AGX Pegasus,
Clara AGX
7.5 Turing TU102, TU104, TU106, TU116, TU117 NVIDIA TITAN RTX,
GeForce RTX 2080 Ti, RTX 2080 Super, RTX 2080, RTX 2070 Super, RTX 2070, RTX 2060 Super, RTX 2060 12GB, RTX 2060,
GeForce GTX 1660 Ti, GTX 1660 Super, GTX 1660, GTX 1650 Super, GTX 1650, MX550, MX450
Quadro RTX 8000, Quadro RTX 6000, Quadro RTX 5000, Quadro RTX 4000, T1000, T600, T400
T1200(mobile), T600(mobile), T500(mobile), Quadro T2000(mobile), Quadro T1000(mobile)
Tesla T4
8.0 Ampere GA100 A100 80GB, A100 40GB, A30
8.6 GA102, GA103, GA104, GA106, GA107 GeForce RTX 3090 Ti, RTX 3090, RTX 3080 Ti, RTX 3080 12GB, RTX 3080, RTX 3070 Ti, RTX 3070, RTX 3060 Ti, RTX 3060, RTX 3050, RTX 3050 Ti(mobile), RTX 3050(mobile), RTX 2050(mobile), MX570 RTX A6000, RTX A5500, RTX A5000, RTX A4500, RTX A4000, RTX A2000
RTX A5000(mobile), RTX A4000(mobile), RTX A3000(mobile), RTX A2000(mobile)
A40, A16, A10, A2
8.7 GA10B Jetson Orin Nano,
Jetson Orin NX,
Jetson AGX Orin,
DRIVE AGX Orin,
DRIVE AGX Pegasus OA,
Clara Holoscan
8.9 Ada Lovelace[53] AD102, AD103, AD104, AD106, AD107 GeForce RTX 4090, RTX 4080 Super, RTX 4080, RTX 4070 Ti Super, RTX 4070 Ti, RTX 4070 Super, RTX 4070, RTX 4060 Ti, RTX 4060 RTX 6000 Ada, RTX 5880 Ada, RTX 5000 Ada, RTX 4500 Ada, RTX 4000 Ada, RTX 4000 SFF L40S, L40, L20, L4, L2
9.0 Hopper GH100 H200, H100
10.0 Blackwell GB100 B100
10.x Blackwell GB202 B40
Compute
capability
(version)
Micro-
architecture
GPUs GeForce Quadro, NVS Tesla/Datacenter Tegra,
Jetson,
DRIVE

'*' – OEM-only products

Version features and specifications

Feature support (unlisted features are supported for all compute capabilities) Compute capability (version)
1.0, 1.1 1.2, 1.3 2.x 3.0 3.2 3.5, 3.7, 5.x, 6.x, 7.0, 7.2 7.5 8.x 9.0
Warp vote functions (__all(), __any()) colspan="1" Шаблон:No colspan="8" Шаблон:Yes
Warp vote functions (__ballot()) colspan="2" rowspan="5" Шаблон:No colspan="7" rowspan="5" Шаблон:Yes
Memory fence functions (__threadfence_system())
Synchronization functions (__syncthreads_count(), __syncthreads_and(), __syncthreads_or())
Surface functions
3D grid of thread blocks
Warp shuffle functions colspan="3" rowspan="2" Шаблон:No colspan="6" rowspan="2" Шаблон:Yes
Unified memory programming
Funnel shift colspan="4" rowspan="1" Шаблон:No colspan="5" rowspan="1" Шаблон:Yes
Dynamic parallelism colspan="5" rowspan="1" Шаблон:No colspan="4" rowspan="1" Шаблон:Yes
Uniform Datapath [54] colspan="6" rowspan="1" Шаблон:No colspan="3" rowspan="1" Шаблон:Yes
Hardware-accelerated async-copy colspan="7" rowspan="4" Шаблон:No colspan="2" rowspan="4" Шаблон:Yes
Hardware-accelerated split arrive/wait barrier
Warp-level support for reduction ops
L2 cache residency management
DPX instructions for accelerated dynamic programming colspan="8" rowspan="4" Шаблон:No colspan="1" rowspan="4" Шаблон:Yes
Distributed shared memory
Thread block cluster
Tensor memory accelerator (TMA) unit
Feature support (unlisted features are supported for all compute capabilities) 1.0,1.1 1.2,1.3 2.x 3.0 3.2 3.5, 3.7, 5.x, 6.x, 7.0, 7.2 7.5 8.x 9.0
Compute capability (version)

[55]

Data types

Data type Operation Supported since
Atomic Operation Supported since
for global memory
Supported since
for shared memory
8-bit integer
signed/unsigned
loading, storing, conversion Шаблон:Yes Шаблон:N/a colspan="2" Шаблон:N/a
16-bit integer
signed/unsigned
general operations Шаблон:Yes atomicCAS() colspan="2" Шаблон:Yes
32-bit integer
signed/unsigned
general operations Шаблон:Yes atomic functions Шаблон:Yes Шаблон:Yes
64-bit integer
signed/unsigned
general operations Шаблон:Yes atomic functions Шаблон:Yes Шаблон:Yes
16-bit floating point
FP16
addition, subtraction,
multiplication, comparison,
warp shuffle functions, conversion
rowspan="2" Шаблон:Yes half2 atomic addition colspan="2" Шаблон:Yes
atomic addition colspan="2" Шаблон:Yes
16-bit floating point
BF16
addition, subtraction,
multiplication, comparison,
warp shuffle functions, conversion
Шаблон:Yes atomic addition colspan="2" Шаблон:Yes
32-bit floating point general operations rowspan="2" Шаблон:Yes atomicExch() Шаблон:Yes Шаблон:Yes
atomic addition colspan="2" Шаблон:Yes
64-bit floating point general operations Шаблон:Yes atomic addition colspan="2" Шаблон:Yes

Note: Any missing lines or empty entries do reflect some lack of information on that exact item.[56]


Tensor cores

FMA per cycle per tensor core[57] Supported since 7.0 7.2 7.5 Workstation 7.5 Desktop 8.0 8.6 8.7 Workstation 8.7 Desktop 8.9 9.0
Data Type For dense matrices For sparse matrices colspan="2" Шаблон:N/a colspan="2" Шаблон:N/a colspan="4" Шаблон:N/a colspan="2" Шаблон:N/a
1-bit values (AND) Шаблон:Yes rowspan="2" Шаблон:No colspan="4" Шаблон:No colspan="2" rowspan="2" Шаблон:Yes colspan="2" rowspan="2" Шаблон:Yes Шаблон:Yes
1-bit values (XOR) rowspan="2" Шаблон:Maybe rowspan="2" colspan="2" Шаблон:No colspan="2" Шаблон:Yes rowspan="2" colspan="1" Шаблон:Maybe
4-bit integers Шаблон:Maybe colspan="2" Шаблон:Yes colspan="2" Шаблон:Yes colspan="2" Шаблон:Yes
8-bit integers Шаблон:Yes Шаблон:Yes Шаблон:No colspan="3" Шаблон:Yes colspan="2" Шаблон:Yes colspan="2" Шаблон:Yes rowspan="3" Шаблон:Yes
8-bit floating point FP8 (E4M3 and E5M2) with FP16 accumulate rowspan="2" colspan="2" Шаблон:Yes rowspan="2" colspan="8" Шаблон:No
8-bit floating point FP8 (E4M3 and E5M2) with FP32 accumulate
16-bit floating point FP16 with FP16 accumulate rowspan="2" Шаблон:Yes rowspan="2" Шаблон:Yes rowspan="2" colspan="2" Шаблон:Yes rowspan="3" colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes rowspan="3" colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes rowspan="3" colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes rowspan="3" Шаблон:Yes
16-bit floating point FP16 with FP32 accumulate rowspan="3" Шаблон:Yes rowspan="3" Шаблон:Yes rowspan="2" Шаблон:Yes
16-bit floating point BF16 with FP32 accumulate rowspan="2" colspan="1" Шаблон:Yes rowspan="2" colspan="1" Шаблон:Yes rowspan="3" colspan="2" Шаблон:No
32-bit (19 bits used) floating point TF32 colspan="1" Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes
64-bit floating point Шаблон:Yes Шаблон:No colspan="2" Шаблон:No Шаблон:Yes colspan="3" Шаблон:Yes Шаблон:Yes

Note: Any missing lines or empty entries do reflect some lack of information on that exact item.[58][59]

Tensor Core Composition 7.0 7.2, 7.5 8.0, 8.6 8.7 8.9 9.0
Dot Product Unit Width in FP16 units (in bytes)[60][61][62][63] colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes Шаблон:Yes
Dot Product Units per Tensor Core colspan="2" Шаблон:Yes colspan="4" Шаблон:Yes
Tensor Cores per SM partition colspan="2" Шаблон:Yes colspan="4" Шаблон:Yes
Full throughput (Bytes/cycle)[64] per SM partition[65] colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes
FP Tensor Cores: Minimum cycles for warp-wide matrix calculation colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes
FP Tensor Cores: Minimum Matrix Shape for full throughput (Bytes)[66] colspan="4" Шаблон:Yes
INT Tensor Cores: Minimum cycles for warp-wide matrix calculation Шаблон:No colspan="3" Шаблон:Yes
INT Tensor Cores: Minimum Matrix Shape for full throughput (Bytes) Шаблон:No colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes

[67][68][69][70]

FP64 Tensor Core Composition 8.0 8.6 8.7 8.9 9.0
Dot Product Unit Width in FP64 units (in bytes) colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes
Dot Product Units per Tensor Core colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes
Tensor Cores per SM partition colspan="5" Шаблон:Yes
Full throughput (Bytes/cycle)[71] per SM partition[72] colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes
Minimum cycles for warp-wide matrix calculation colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes
Minimum Matrix Shape for full throughput (Bytes)[73] colspan="3" Шаблон:Yes

Technical Specification

Technical specifications Compute capability (version)
1.0 1.1 1.2 1.3 2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2 7.0 7.2 7.5 8.0 8.6 8.7 8.9 9.0
Maximum number of resident grids per device
(concurrent kernel execution, can be lower for specific devices)
colspan="4" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="4" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="6" Шаблон:Yes
Maximum dimensionality of grid of thread blocks colspan="4" Шаблон:Yes colspan="19" Шаблон:Yes
Maximum x-dimension of a grid of thread blocks colspan="5" Шаблон:Yes colspan="18" Шаблон:Yes
Maximum y-, or z-dimension of a grid of thread blocks colspan="23" Шаблон:Yes
Maximum dimensionality of thread block colspan="23" Шаблон:Yes
Maximum x- or y-dimension of a block colspan="4" Шаблон:Yes colspan="19" Шаблон:Yes
Maximum z-dimension of a block colspan="23" Шаблон:Yes
Maximum number of threads per block colspan="4" Шаблон:Yes colspan="19" Шаблон:Yes
Warp size colspan="23" Шаблон:Yes
Maximum number of resident blocks per multiprocessor colspan="5" Шаблон:Yes colspan="4" Шаблон:Yes colspan="8" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes
Maximum number of resident warps per multiprocessor colspan="2" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="12" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="3" Шаблон:Yes colspan="1" Шаблон:Yes
Maximum number of resident threads per multiprocessor colspan="2" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="12" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="3" Шаблон:Yes colspan="1" Шаблон:Yes
Number of 32-bit regular registers per multiprocessor colspan="2" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="3" Шаблон:Yes colspan="1" Шаблон:Yes colspan="14" Шаблон:Yes
Number of 32-bit uniform registers per multiprocessor colspan="17" Шаблон:No colspan="1" Шаблон:Yes[74]

[75]

colspan="5" Шаблон:Yes
Maximum number of 32-bit registers per thread block colspan="2" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="4" Шаблон:Yes colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="8" Шаблон:Yes
Maximum number of 32-bit regular registers per thread colspan="4" Шаблон:Yes colspan="2" Шаблон:Yes colspan="17" Шаблон:Yes
Maximum number of 32-bit uniform registers per warp colspan="17" Шаблон:No colspan="1" Шаблон:Yes[76]

[77]

colspan="5" Шаблон:Yes
Amount of shared memory per multiprocessor
(out of overall shared memory + L1 cache, where applicable)
colspan="4" Шаблон:Yes colspan="1" Шаблон:Yes colspan="3" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes
Maximum amount of shared memory per thread block colspan="4" Шаблон:Yes colspan="11" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes
Number of shared memory banks colspan="4" Шаблон:Yes colspan="19" Шаблон:Yes
Amount of local memory per thread colspan="4" Шаблон:Yes colspan="19" Шаблон:Yes
Constant memory size accessible by CUDA C/C++
(1 bank, PTX can access 11 banks, SASS can access 18 banks)
colspan="23" Шаблон:Yes
Cache working set per multiprocessor for constant memory colspan="12" Шаблон:Yes colspan="1" Шаблон:Yes colspan="10" Шаблон:Yes
Cache working set per multiprocessor for texture memory colspan="3" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="4" Шаблон:Yes[78] colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes[79] colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes
Maximum width for 1D texture reference bound to a CUDA
array
colspan="4" Шаблон:Yes colspan="8" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width for 1D texture reference bound to linear
memory
colspan="12" Шаблон:Yes colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="6" Шаблон:Yes
Maximum width and number of layers for a 1D layered
texture reference
colspan="4" Шаблон:Yes colspan="8" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width and height for 2D texture reference bound
to a CUDA array
colspan="4" Шаблон:Yes colspan="8" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width and height for 2D texture reference bound
to a linear memory
colspan="9" Шаблон:Yes colspan="3" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width and height for 2D texture reference bound
to a CUDA array supporting texture gather
colspan="4" Шаблон:N/a colspan="8" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width, height, and number of layers for a 2D
layered texture reference
colspan="4" Шаблон:Yes colspan="8" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width, height and depth for a 3D texture
reference bound to linear memory or a CUDA array
colspan="5" Шаблон:Yes colspan="7" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width (and height) for a cubemap texture reference colspan="4" Шаблон:N/a colspan="8" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width (and height) and number of layers
for a cubemap layered texture reference
colspan="4" Шаблон:N/a colspan="8" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum number of textures that can be bound to a
kernel
colspan="5" Шаблон:Yes colspan="18" Шаблон:Yes
Maximum width for a 1D surface reference bound to a
CUDA array
colspan="4" rowspan="8" Шаблон:No colspan="5" Шаблон:Yes colspan="3" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width and number of layers for a 1D layered
surface reference
colspan="5" Шаблон:Yes colspan="3" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width and height for a 2D surface reference
bound to a CUDA array
colspan="5" Шаблон:Yes colspan="3" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width, height, and number of layers for a 2D
layered surface reference
colspan="5" Шаблон:Yes colspan="3" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width, height, and depth for a 3D surface
reference bound to a CUDA array
colspan="5" Шаблон:Yes colspan="3" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width (and height) for a cubemap surface reference bound to a CUDA array colspan="5" Шаблон:Yes colspan="3" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum width and number of layers for a cubemap
layered surface reference
colspan="5" Шаблон:Yes colspan="3" Шаблон:Yes colspan="11" Шаблон:Yes
Maximum number of surfaces that can be bound to a
kernel
colspan="1" Шаблон:Yes colspan="10" Шаблон:Yes colspan="8" Шаблон:Yes
Maximum number of instructions per kernel colspan="4" Шаблон:Yes colspan="19" Шаблон:Yes
Maximum number of Thread Blocks per Thread Block Cluster[80] colspan="22" Шаблон:No Шаблон:Yes
Technical specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2 7.0 7.2 7.5 8.0 8.6 8.7 8.9 9.0
Compute capability (version)
[81]

[82]

Multiprocessor Architecture

Architecture specifications Compute capability (version)
1.0 1.1 1.2 1.3 2.0 2.1 3.0 3.2 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2 7.0 7.2 7.5 8.0 8.6 8.7 8.9 9.0
Number of ALU lanes for INT32 arithmetic operations rowspan="3" colspan="4" Шаблон:Yes rowspan="3" colspan="1" Шаблон:Yes rowspan="3" colspan="1" Шаблон:Yes rowspan="3" colspan="4" Шаблон:Yes rowspan="3" colspan="2" Шаблон:Yes rowspan="4" colspan="1" Шаблон:Yes rowspan="4" colspan="1" Шаблон:Yes rowspan="3" colspan="1" Шаблон:Yes rowspan="4" colspan="1" Шаблон:Yes colspan="4" Шаблон:Yes rowspan="2" colspan="2" Шаблон:Yes colspan="2" Шаблон:Yes
Number of ALU lanes for any INT32 or FP32 arithmetic operation colspan="4" Шаблон:N/a colspan="2" Шаблон:N/a
Number of ALU lanes for FP32 arithmetic operations rowspan="2" colspan="3" Шаблон:Yes rowspan="1" colspan="3" Шаблон:Yes rowspan="1" colspan="1" Шаблон:Yes rowspan="2" colspan="1" Шаблон:Yes
Number of ALU lanes for FP16x2 arithmetic operations colspan="12" Шаблон:No colspan="1" Шаблон:Yes rowspan="1" colspan="1" Шаблон:Yes rowspan="1" colspan="2" Шаблон:Yes rowspan="1" colspan="1" Шаблон:Yes
Number of ALU lanes for FP64 arithmetic operations colspan="3" Шаблон:No Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="3" Шаблон:Yes Шаблон:Yes colspan="2" Шаблон:Yes colspan="2" Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Maybe Шаблон:Yes Шаблон:Yes
Number of Load/Store Units colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes colspan="7" Шаблон:Yes colspan="1" Шаблон:Yes colspan="5" Шаблон:Yes colspan="4" Шаблон:Yes colspan="1" Шаблон:Yes
Number of special function units for single-precision floating-point transcendental functions colspan="4" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="6" Шаблон:Yes colspan="2" Шаблон:Yes colspan="2" Шаблон:Yes colspan="8" Шаблон:Yes
Number of texture mapping units (TMU) colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes colspan="6" Шаблон:Yes colspan="8" Шаблон:Yes
Number of ALU lanes for uniform INT32 arithmetic operations colspan="18" Шаблон:No colspan="1" Шаблон:Yes[83] colspan="5" Шаблон:Yes
Number of tensor cores colspan="16" Шаблон:No colspan="2" Шаблон:Yes[84] Шаблон:Yes colspan="3" Шаблон:Yes colspan="2" Шаблон:Yes
Number of raytracing cores colspan="18" Шаблон:No Шаблон:Yes Шаблон:No Шаблон:Yes colspan="1" Шаблон:No Шаблон:Yes colspan="1" Шаблон:No
Number of SM Partitions = Processing Blocks[85] colspan="10" Шаблон:Yes colspan="3" Шаблон:Yes colspan="1" Шаблон:Yes colspan="10" Шаблон:Yes
Number of warp schedulers per SM partition colspan="4" Шаблон:Yes colspan="2" Шаблон:Yes colspan="4" Шаблон:Yes colspan="14" Шаблон:Yes
Max number of new instructions issued each cycle by a single scheduler[86] colspan="4" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes[87] colspan="10" Шаблон:Yes colspan="8" Шаблон:Yes
Size of unified memory for data cache and shared memory colspan="3" Шаблон:Yes colspan="1" Шаблон:Yes colspan="5" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes Шаблон:Yes[88] Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes
Size of L3 instruction cache per GPU Шаблон:Yes[89] colspan="18" rowspan="2" Шаблон:Maybe
Size of L2 instruction cache per Texture Processor Cluster (TPC) Шаблон:Yes
Size of L1.5 instruction cache per SM[90] rowspan="2" Шаблон:Yes Шаблон:Yes Шаблон:Yes Шаблон:Yes[91] Шаблон:Yes Шаблон:Yes rowspan="2" Шаблон:Yes rowspan="2" Шаблон:Yes[92] rowspan="2" Шаблон:Yes[93]
Size of L1 instruction cache per SM colspan="3" Шаблон:Yes colspan=2 Шаблон:Yes
Size of L0 instruction cache per SM partition colspan="10" Шаблон:Maybe colspan="6" Шаблон:No Шаблон:Yes Шаблон:Yes[94] Шаблон:Yes
Instruction Width[95] colspan="6" Шаблон:Yes[96] colspan="4" Шаблон:Yes colspan="6" Шаблон:Yes colspan="8" Шаблон:Yes
Memory Bus Width per Memory Partition in bits colspan="12" Шаблон:Yes colspan="1" Шаблон:Yes Шаблон:Yes colspan="2" Шаблон:Yes Шаблон:Yes colspan="2" Шаблон:Yes Шаблон:Yes colspan="3" Шаблон:Yes Шаблон:Yes
L2 Cache per Memory Partition colspan="3" Шаблон:Yes colspan="1" Шаблон:Yes colspan="4" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes
Number of Render Output Units (ROP) per memory partition (or per GPC in later models) colspan="4" Шаблон:Yes colspan="3" Шаблон:Yes colspan="1" Шаблон:Yes colspan="3" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="1" Шаблон:Yes colspan="2" Шаблон:Yes
Architecture specifications 1.0 1.1 1.2 1.3 2.0 2.1 3.0 3.2 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2 7.0 7.2 7.5 8.0 8.6 8.7 8.9 9.0
Compute capability (version)
[97]

For more information read the Nvidia CUDA programming guide.[98]

Current and future usages of CUDA architecture

See also

References

Шаблон:Reflist

Further reading

External links

Шаблон:Nvidia Шаблон:CPU technologies Шаблон:Parallel computing

Шаблон:Authority control

  1. 1,0 1,1 Шаблон:Cite web
  2. Шаблон:Cite news
  3. Шаблон:Cite web
  4. Шаблон:Cite web
  5. Шаблон:Cite web
  6. Шаблон:Cite magazine
  7. Шаблон:Cite web
  8. Шаблон:YouTube
  9. Шаблон:YouTube
  10. Шаблон:Cite book
  11. Шаблон:Cite journal
  12. Шаблон:Cite journal
  13. Шаблон:Cite web
  14. Шаблон:Cite web
  15. Шаблон:Cite web
  16. Шаблон:Cite web
  17. Шаблон:Cite web
  18. Шаблон:Cite web
  19. Шаблон:Cite web
  20. Шаблон:Cite web
  21. Шаблон:Cite conference
  22. Шаблон:Cite web
  23. Шаблон:Cite web
  24. Шаблон:Cite web
  25. Шаблон:Cite web
  26. Шаблон:Cite web
  27. Шаблон:Cite web
  28. Шаблон:Cite web
  29. Шаблон:Cite web
  30. Шаблон:Cite web
  31. Шаблон:Citation
  32. Шаблон:Cite web
  33. Шаблон:Cite web
  34. Шаблон:Cite web
  35. Шаблон:Cite web
  36. Шаблон:Cite web
  37. Шаблон:Cite web
  38. Шаблон:Cite web
  39. Шаблон:Cite web
  40. Шаблон:Cite web
  41. Шаблон:Cite web
  42. Шаблон:Cite web
  43. Шаблон:Cite web
  44. Шаблон:Cite web
  45. Шаблон:Cite web
  46. Шаблон:Cite web
  47. Шаблон:Cite web
  48. Шаблон:Cite web
  49. Шаблон:Cite web
  50. Nvidia Xavier Specs on TechPowerUp (preliminary)
  51. Шаблон:Cite web
  52. Шаблон:Cite web
  53. Шаблон:Cite web
  54. Dissecting the Turing GPU Architecture through Microbenchmarking
  55. Шаблон:Cite web
  56. Шаблон:Cite web
  57. Fused-Multiply-Add, actually executed, Dense Matrix
  58. Шаблон:Cite web
  59. Шаблон:Cite web
  60. In the Whitepapers the Tensor Core cube diagrams represent the Dot Product Unit Width into the height (4 FP16 for Volta and Turing, 8 FP16 for A100, 4 FP16 for GA102, 16 FP16 for GH100). The other two dimensions represent the number of Dot Product Units (4x4 = 16 for Volta and Turing, 8x4 = 32 for Ampere and Hopper). The resulting gray blocks are the FP16 FMA operations per cycle. Pascal without Tensor core is only shown for speed comparison as is Volta V100 with non-FP16 datatypes.
  61. Шаблон:Cite web
  62. Шаблон:Cite web
  63. Шаблон:Cite web
  64. shape x converted operand size, e.g. 2 tensor cores x 4x4x4xFP16/cycle = 256 Bytes/cycle
  65. = product first 3 table rows
  66. = product of previous 2 table rows; shape: e.g. 8x8x4xFP16 = 512 Bytes
  67. Шаблон:Cite journal
  68. Шаблон:Cite web
  69. Шаблон:Cite arXiv
  70. Шаблон:Cite web
  71. shape x converted operand size, e.g. 2 tensor cores x 4x4x4xFP16/cycle = 256 Bytes/cycle
  72. = product first 3 table rows
  73. = product of previous 2 table rows; shape: e.g. 8x8x4xFP16 = 512 Bytes
  74. Шаблон:Cite arXiv
  75. Шаблон:Cite book
  76. Шаблон:Cite arXiv
  77. Шаблон:Cite book
  78. dependent on device
  79. Шаблон:Cite web
  80. NVIDIA H100 Tensor Core GPU Architecture
  81. H.1. Features and Technical Specifications – Table 14. Technical Specifications per Compute Capability
  82. NVIDIA Hopper Architecture In-Depth
  83. 2 clock cycles/instruction for each SM partition Шаблон:Cite book
  84. Шаблон:Cite web
  85. The schedulers and dispatchers have dedicated execution units unlike with Fermi and Kepler.
  86. Dispatching can overlap concurrently, if it takes more than one cycle (when there are less execution units than 32/SM Partition)
  87. No more than one scheduler can issue 2 instructions at once. The first scheduler is in charge of warps with odd IDs. The second scheduler is in charge of warps with even IDs.
  88. Шаблон:Cite web
  89. Шаблон:Cite web
  90. Шаблон:Cite arXiv
  91. Шаблон:Cite web
  92. Шаблон:Cite arXiv
  93. Шаблон:Cite web
  94. Note that Шаблон:Cite arXiv disagrees and states 2 KiB L0 instruction cache per SM partition and 16 KiB L1 instruction cache per SM
  95. Шаблон:Cite arXiv
  96. Шаблон:Cite web
  97. Шаблон:Cite web
  98. Шаблон:Cite web Шаблон:Small, page 148 of 175 (Version 5.0 October 2012).
  99. Шаблон:Cite web
  100. Шаблон:Cite web