Английская Википедия:Canberra distance

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

Шаблон:Short description The Canberra distance is a numerical measure of the distance between pairs of points in a vector space, introduced in 1966[1] and refined in 1967[2] by Godfrey N. Lance and William T. Williams. It is a weighted version of L₁ (Manhattan) distance.[3] The Canberra distance has been used as a metric for comparing ranked lists[3] and for intrusion detection in computer security.[4] It has also been used to analyze the gut microbiome in different disease states.[5]

Definition

The Canberra distance d between vectors p and q in an n-dimensional real vector space is given as follows:

<math>d(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^n \frac{|p_i-q_i|}{|p_i|+|q_i|}</math>

where

<math>\mathbf{p}=(p_1,p_2,\dots,p_n)\text{ and }\mathbf{q}=(q_1,q_2,\dots,q_n)</math>

are vectors.

The Canberra metric, Adkins form, divides the distance d by (n-Z) where Z is the number of attributes that are 0 for p and q.Шаблон:Citation needed

See also

Notes

Шаблон:Reflist

References


Шаблон:Metric-geometry-stub

  1. Шаблон:Cite journal
  2. Шаблон:Cite journal
  3. 3,0 3,1 Giuseppe Jurman; Samantha Riccadonna; Roberto Visintainer; Cesare Furlanello; "Canberra Distance on Ranked Lists", in Shivani Agrawal; Chris Burges; Koby Crammer (editors); Proceedings, Advances in Ranking – NIPS 09 Workshop, 2009, p. 22–27
  4. Шаблон:Cite journal
  5. Шаблон:Cite journal