Английская Википедия:Category O

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

In the representation theory of semisimple Lie algebras, Category O (or category <math>\mathcal{O}</math>) is a category whose objects are certain representations of a semisimple Lie algebra and morphisms are homomorphisms of representations.

Introduction

Assume that <math>\mathfrak{g}</math> is a (usually complex) semisimple Lie algebra with a Cartan subalgebra <math>\mathfrak{h}</math>, <math>\Phi</math> is a root system and <math>\Phi^+</math> is a system of positive roots. Denote by <math>\mathfrak{g}_\alpha</math> the root space corresponding to a root <math>\alpha\in\Phi</math> and <math>\mathfrak{n}:=\bigoplus_{\alpha\in\Phi^+} \mathfrak{g}_\alpha</math> a nilpotent subalgebra.

If <math>M</math> is a <math>\mathfrak{g}</math>-module and <math>\lambda\in\mathfrak{h}^*</math>, then <math>M_\lambda</math> is the weight space

<math>M_\lambda=\{v \in M : \forall h \in \mathfrak{h}\,\,h \cdot v = \lambda(h)v\}.</math>

Definition of category O

The objects of category <math>\mathcal O</math> are <math>\mathfrak{g}</math>-modules <math>M</math> such that

  1. <math>M</math> is finitely generated
  2. <math>M=\bigoplus_{\lambda\in\mathfrak{h}^*} M_\lambda</math>
  3. <math>M</math> is locally <math>\mathfrak{n}</math>-finite. That is, for each <math>v \in M</math>, the <math>\mathfrak{n}</math>-module generated by <math>v</math> is finite-dimensional.

Morphisms of this category are the <math>\mathfrak{g}</math>-homomorphisms of these modules.

Basic properties

Шаблон:Expand section

Examples

Шаблон:Expand section

  • All finite-dimensional <math>\mathfrak{g}</math>-modules and their <math>\mathfrak{g}</math>-homomorphisms are in category O.
  • Verma modules and generalized Verma modules and their <math>\mathfrak{g}</math>-homomorphisms are in category O.

See also

References