Английская Википедия:Cauchy formula for repeated integration

Материал из Онлайн справочника
Перейти к навигацииПерейти к поиску

The Cauchy formula for repeated integration, named after Augustin-Louis Cauchy, allows one to compress n antiderivatives of a function into a single integral (cf. Cauchy's formula).

Scalar case

Let f be a continuous function on the real line. Then the nth repeated integral of f with base-point a, <math display="block">f^{(-n)}(x) = \int_a^x \int_a^{\sigma_1} \cdots \int_a^{\sigma_{n-1}} f(\sigma_{n}) \, \mathrm{d}\sigma_{n} \cdots \, \mathrm{d}\sigma_2 \, \mathrm{d}\sigma_1,</math> is given by single integration <math display="block">f^{(-n)}(x) = \frac{1}{(n-1)!} \int_a^x\left(x-t\right)^{n-1} f(t)\,\mathrm{d}t.</math>

Proof

A proof is given by induction. The base case with n=1 is trivial, since it is equivalent to: <math display="block">f^{(-1)}(x) = \frac1{0!}\int_a^x {(x-t)^0}f(t)\,\mathrm{d}t = \int_a^x f(t)\,\mathrm{d}t</math>Now, suppose this is true for n, and let us prove it for n+1. Firstly, using the Leibniz integral rule, note that <math display="block">\frac{\mathrm{d}}{\mathrm{d} x} \left[ \frac{1}{n!} \int_a^x \left(x-t\right)^n f(t)\,\mathrm{d}t \right] = \frac{1}{(n-1)!} \int_a^x\left(x-t\right)^{n-1} f(t)\,\mathrm{d}t .</math>

Then, applying the induction hypothesis, <math display="block">\begin{align} f^{-(n+1)}(x) &= \int_a^x \int_a^{\sigma_1} \cdots \int_a^{\sigma_{n}} f(\sigma_{n+1}) \, \mathrm{d}\sigma_{n+1} \cdots \, \mathrm{d}\sigma_2 \, \mathrm{d}\sigma_1 \\ &= \int_a^x \frac{1}{(n-1)!} \int_a^{\sigma_1}\left(\sigma_1-t\right)^{n-1} f(t)\,\mathrm{d}t\,\mathrm{d}\sigma_1 \\ &= \int_a^x \frac{\mathrm{d}}{\mathrm{d}\sigma_1} \left[\frac{1}{n!} \int_a^{\sigma_1} \left(\sigma_1-t\right)^n f(t)\,\mathrm{d}t\right] \,\mathrm{d}\sigma_1 \\ &= \frac{1}{n!} \int_a^x \left(x-t\right)^n f(t)\,\mathrm{d}t. \end{align}</math>

  • It has been shown that this statement holds true for the base case <math>n=1</math>.
  • If the statement is true for <math>n=k</math>, then it has been shown that the statement holds true for <math>n=k+1</math>.
  • Thus this statement has been proven true for all positive integers.

This completes the proof.

Generalizations and applications

The Cauchy formula is generalized to non-integer parameters by the Riemann-Liouville integral, where <math>n \in \Z_{\geq 0}</math> is replaced by <math>\alpha \in \Complex,\ \Re(\alpha)>0</math>, and the factorial is replaced by the gamma function. The two formulas agree when <math>\alpha \in \Z_{\geq 0}</math>.

Both the Cauchy formula and the Riemann-Liouville integral are generalized to arbitrary dimension by the Riesz potential.

In fractional calculus, these formulae can be used to construct a differintegral, allowing one to differentiate or integrate a fractional number of times. Differentiating a fractional number of times can be accomplished by fractional integration, then differentiating the result.

References

  • Augustin-Louis Cauchy: Trente-Cinquième Leçon. In: Résumé des leçons données à l’Ecole royale polytechnique sur le calcul infinitésimal. Imprimerie Royale, Paris 1823. Reprint: Œuvres complètes II(4), Gauthier-Villars, Paris, pp. 5–261.
  • Gerald B. Folland, Advanced Calculus, p. 193, Prentice Hall (2002). Шаблон:ISBN

External links